Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 361-365 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.361


References

1. Kamakshi P., Deshpande M.P., Chaki S.H. Effect of Ag on structural, optical and luminescence properties of ZnS nanoparticles synthesized by microwave-assisted chemical route. Appl. Phys. A. 2017. 123. P. 367. https://doi.org/10.1007/s00339-017-0980-8.
https://doi.org/10.1007/s00339-017-0980-8
2. Bhargava R.N., Gallagher D., Hong X., Nurmikko A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. l994. 72. P. 416-419. https://doi.org/10.1103/PhysRevLett.72.416.
https://doi.org/10.1103/PhysRevLett.72.416
3. Sarkar R., Tiwary C.S., Kumbhakar P., Basu S., Mitra A.K. Yellow-orange light emission from Mn2+-doped ZnS nanoparticles. Physica E. 2008. 40. P. 3115-3120. https://doi.org/10.1016/j.physe.2008.04.013.
https://doi.org/10.1016/j.physe.2008.04.013
4. Chandrakar R.K., Baghel R.N., Chandra V.K., Chandra B.P. Synthesis, characterization and photo-luminescence studies of undoped ZnS nanoparticles. Superlattices and microstructures. 2015. 84. P. 132 -143. https://doi.org/10.1016/j.spmi.2015.04.023.
https://doi.org/10.1016/j.spmi.2015.04.023
5. Kumar S., Chen C.L., Dong C.L. et al. Room temperature ferromagnetism in Ni doped ZnS nano-particles. J. Alloys. Comp. 2013. 554. P. 357-362. https://doi.org/10.1016/j.jallcom.2012.12.001.
https://doi.org/10.1016/j.jallcom.2012.12.001
6. Prasanth S., Irshad P., Raj D.R., Vineeshkumar T.V., Philip R., Sudarsanakumar C. Nonlinear optical property and fluorescence quenching beha-vior of PVP capped ZnS nanoparticles co-doped with Mn2+ and Sm3+. J. Lumin. 2015. 166. P. 167-175. https://doi.org/10.1016/j.jlumin.2015.05.028.
https://doi.org/10.1016/j.jlumin.2015.05.028
7. Ardid M., Ferrero J.L., Herrero A., Study of the background on a ZnS(Ag) alpha counter with a plastic veto detector. Nucl. Instrum. and Meth. in Phys. Res. A. 2006. 557. P. 510-515. https://doi.org/10.1016/j.nima.2005.10.124.
https://doi.org/10.1016/j.nima.2005.10.124
8. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid. St. M. 2008. 12. P. 44-50. https://doi.org/10.1016/j.cossms.2008.12.002.
https://doi.org/10.1016/j.cossms.2008.12.002
9. Merzhanov A.G., Rogachev A.S. Structural macrokinetics of SHS processes. Pure. Appl. Chem. 1992. 64. P. 941-953. https://doi.org/10.1351/pac199264070941.
https://doi.org/10.1351/pac199264070941
10. Lee D.C., Bukesov S.A., Lee S., Kang J.H., Jeon D.Y., Park D.H., Kim J.Y. The effects of surface treatment for ZnS:Ag,Cl using a combination of stirring and ultrasonication in KOH solutions. J. Electrochem. Soc. 2004. 151. No 11. P. H227-H231. https://doi.org/10.1149/1.1805525.
https://doi.org/10.1149/1.1805525
11. Uehara Y. Electronic structure of luminescence center of ZnS:Ag phosphors. J. Chem. Phys. 1975. 62. P. 2982-2994. https://doi.org/10.1063/1.430903.
https://doi.org/10.1063/1.430903
12. Hua Qu, Lixin Cao, Ge Su, Wei Liu, Yuanguang Sun, Bohua Dong. ZnS:Ag luminescent nanoparticles synthesized with different molar ratio of S/Zn. Adv. Mater. Res. 2009. 79-82. P. 589-592. https://doi.org/10.4028/www.scientific.net/AMR.79-82.589.
https://doi.org/10.4028/www.scientific.net/AMR.79-82.589
13. Sun J.Q., Hao E.C., Sun Y.P., Zhang X., Yang B., Zou S., Shen J.C., Wang S.B. Multilayer assemblies of colloidal ZnS doped with silver and polyelectrolytes based on electrostatic interaction. Thin Solid Films. 1998. 327-329. P. 528-531. https://doi.org/10.1016/S0040-6090(98)00703-2.
https://doi.org/10.1016/S0040-6090(98)00703-2
14. Kar S., Chaudhuri S. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. J. Phys. Chem. B. 2005. 109. No. 8. P. 3298-3302. https://doi.org/10.1021/jp045817j.
https://doi.org/10.1021/jp045817j
15. Becker W.G., Bard A.J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 1983. 87, No. 24. P. 4888-4893. https://doi.org/10.1021/j150642a026.
https://doi.org/10.1021/j150642a026
16. Morozova N.K., Mideros D.A., Gavrishchuk E.M., Galstyan V.G. Role of background O and Cu impurities in the optics of ZnSe crystals in the context of the band anticrossing model. Semiconductors. 2008. 42, No. 2. P. 131-136. https://doi.org/10.1134/S1063782608020024.
https://doi.org/10.1134/S1063782608020024
17. Urabe K., Shionoya S., Suzuki A. Polarization of the blue-copper luminescence in ZnS crystals. J. Phys. Soc. Jpn. 1968. 25. P. 1611-1617. https://doi.org/10.1143/JPSJ.25.1611.
https://doi.org/10.1143/JPSJ.25.1611
18. Tunitskaya V.F., Filina T.F., Panasyuk E.I., Ilyukhina Z.P. The temperature properties of the individual blue bands of self-activated zinc sulfide and the nature of the corresponding radiative centers. J. Appl. Spectrosc. 1971. 14. P. 182-186. https://doi.org/10.1007/BF00613169.
https://doi.org/10.1007/BF00613169
19. Morozova N.K., Mideros D.A., Danilevich N.D. Absorption, luminescence excitation, and infrared transmittance spectra of ZnS(O)-ZnSe(O) crystals in the context of the band anticrossing theory. Semiconductors. 2009. 43, No. 2. P. 162-167. https://doi.org/10.1134/S1063782609020080.
https://doi.org/10.1134/S1063782609020080
20. Aven M., Prener J.S. (Eds.), Physics and Chemistry of II-VI Compounds. North-Holland Publishing Company, Amsterdam, 1967.
21. Nanda J., Sapra S., Sarma D.D. et al. Size-selected zinc sulfide nano-crys-tallites:  Synthesis, structure, and optical studies. Chem. Mater. 2000. 12. P. 1018-1024. https://doi.org/10.1021/cm990583f.
https://doi.org/10.1021/cm990583f
22. Bacherikov Yu.Yu., Korsunska N.E., Kladko V.P., Venger E.F., Baran N.P., Kuchuk A.V., Zhuk A.G. Structural transformations in ZnS:Cu in the course of thermal annealing. Semiconductors. 2012. 46, No. 2. P. 188-192. https://doi.org/10.1134/S1063782612020030.
https://doi.org/10.1134/S1063782612020030
23. Bacherikov Yu.Yu., Vorona I.P., Zhuk A.G., Okhrimenko O.B., Kurichka R.V., Tarasov G.G. Photoluminescence properties of ZnS:Mn single crystal effected by defect drift in electric and pulsed magnetic fields. J. Lumin. 2018. 204. P. 548-553. https://doi.org/10.1016/j.jlumin.2018.08.047.
https://doi.org/10.1016/j.jlumin.2018.08.047
24. Bouamama K., Lebga N., Kassali K. High-pressure calculations of the elastic properties of ZnSxSe1−x alloy in the virtual-crystal approximation. High Pressure Research. 2005. 25, No. 3. P. 217-225. https://doi.org/10.1080/08957950500259041.
https://doi.org/10.1080/08957950500259041