Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 361-365 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.361
References
1. Kamakshi P., Deshpande M.P., Chaki S.H. Effect of Ag on structural, optical and luminescence properties of ZnS nanoparticles synthesized by microwave-assisted chemical route. Appl. Phys. A. 2017. 123. P. 367. https://doi.org/10.1007/s00339-017-0980-8. https://doi.org/10.1007/s00339-017-0980-8 | | 2. Bhargava R.N., Gallagher D., Hong X., Nurmikko A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. l994. 72. P. 416-419. https://doi.org/10.1103/PhysRevLett.72.416. https://doi.org/10.1103/PhysRevLett.72.416 | | 3. Sarkar R., Tiwary C.S., Kumbhakar P., Basu S., Mitra A.K. Yellow-orange light emission from Mn2+-doped ZnS nanoparticles. Physica E. 2008. 40. P. 3115-3120. https://doi.org/10.1016/j.physe.2008.04.013. https://doi.org/10.1016/j.physe.2008.04.013 | | 4. Chandrakar R.K., Baghel R.N., Chandra V.K., Chandra B.P. Synthesis, characterization and photo-luminescence studies of undoped ZnS nanoparticles. Superlattices and microstructures. 2015. 84. P. 132 -143. https://doi.org/10.1016/j.spmi.2015.04.023. https://doi.org/10.1016/j.spmi.2015.04.023 | | 5. Kumar S., Chen C.L., Dong C.L. et al. Room temperature ferromagnetism in Ni doped ZnS nano-particles. J. Alloys. Comp. 2013. 554. P. 357-362. https://doi.org/10.1016/j.jallcom.2012.12.001. https://doi.org/10.1016/j.jallcom.2012.12.001 | | 6. Prasanth S., Irshad P., Raj D.R., Vineeshkumar T.V., Philip R., Sudarsanakumar C. Nonlinear optical property and fluorescence quenching beha-vior of PVP capped ZnS nanoparticles co-doped with Mn2+ and Sm3+. J. Lumin. 2015. 166. P. 167-175. https://doi.org/10.1016/j.jlumin.2015.05.028. https://doi.org/10.1016/j.jlumin.2015.05.028 | | 7. Ardid M., Ferrero J.L., Herrero A., Study of the background on a ZnS(Ag) alpha counter with a plastic veto detector. Nucl. Instrum. and Meth. in Phys. Res. A. 2006. 557. P. 510-515. https://doi.org/10.1016/j.nima.2005.10.124. https://doi.org/10.1016/j.nima.2005.10.124 | | 8. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid. St. M. 2008. 12. P. 44-50. https://doi.org/10.1016/j.cossms.2008.12.002. https://doi.org/10.1016/j.cossms.2008.12.002 | | 9. Merzhanov A.G., Rogachev A.S. Structural macrokinetics of SHS processes. Pure. Appl. Chem. 1992. 64. P. 941-953. https://doi.org/10.1351/pac199264070941. https://doi.org/10.1351/pac199264070941 | | 10. Lee D.C., Bukesov S.A., Lee S., Kang J.H., Jeon D.Y., Park D.H., Kim J.Y. The effects of surface treatment for ZnS:Ag,Cl using a combination of stirring and ultrasonication in KOH solutions. J. Electrochem. Soc. 2004. 151. No 11. P. H227-H231. https://doi.org/10.1149/1.1805525. https://doi.org/10.1149/1.1805525 | | 11. Uehara Y. Electronic structure of luminescence center of ZnS:Ag phosphors. J. Chem. Phys. 1975. 62. P. 2982-2994. https://doi.org/10.1063/1.430903. https://doi.org/10.1063/1.430903 | | 12. Hua Qu, Lixin Cao, Ge Su, Wei Liu, Yuanguang Sun, Bohua Dong. ZnS:Ag luminescent nanoparticles synthesized with different molar ratio of S/Zn. Adv. Mater. Res. 2009. 79-82. P. 589-592. https://doi.org/10.4028/www.scientific.net/AMR.79-82.589. https://doi.org/10.4028/www.scientific.net/AMR.79-82.589 | | 13. Sun J.Q., Hao E.C., Sun Y.P., Zhang X., Yang B., Zou S., Shen J.C., Wang S.B. Multilayer assemblies of colloidal ZnS doped with silver and polyelectrolytes based on electrostatic interaction. Thin Solid Films. 1998. 327-329. P. 528-531. https://doi.org/10.1016/S0040-6090(98)00703-2. https://doi.org/10.1016/S0040-6090(98)00703-2 | | 14. Kar S., Chaudhuri S. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. J. Phys. Chem. B. 2005. 109. No. 8. P. 3298-3302. https://doi.org/10.1021/jp045817j. https://doi.org/10.1021/jp045817j | | 15. Becker W.G., Bard A.J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 1983. 87, No. 24. P. 4888-4893. https://doi.org/10.1021/j150642a026. https://doi.org/10.1021/j150642a026 | | 16. Morozova N.K., Mideros D.A., Gavrishchuk E.M., Galstyan V.G. Role of background O and Cu impurities in the optics of ZnSe crystals in the context of the band anticrossing model. Semiconductors. 2008. 42, No. 2. P. 131-136. https://doi.org/10.1134/S1063782608020024. https://doi.org/10.1134/S1063782608020024 | | 17. Urabe K., Shionoya S., Suzuki A. Polarization of the blue-copper luminescence in ZnS crystals. J. Phys. Soc. Jpn. 1968. 25. P. 1611-1617. https://doi.org/10.1143/JPSJ.25.1611. https://doi.org/10.1143/JPSJ.25.1611 | | 18. Tunitskaya V.F., Filina T.F., Panasyuk E.I., Ilyukhina Z.P. The temperature properties of the individual blue bands of self-activated zinc sulfide and the nature of the corresponding radiative centers. J. Appl. Spectrosc. 1971. 14. P. 182-186. https://doi.org/10.1007/BF00613169. https://doi.org/10.1007/BF00613169 | | 19. Morozova N.K., Mideros D.A., Danilevich N.D. Absorption, luminescence excitation, and infrared transmittance spectra of ZnS(O)-ZnSe(O) crystals in the context of the band anticrossing theory. Semiconductors. 2009. 43, No. 2. P. 162-167. https://doi.org/10.1134/S1063782609020080. https://doi.org/10.1134/S1063782609020080 | | 20. Aven M., Prener J.S. (Eds.), Physics and Chemistry of II-VI Compounds. North-Holland Publishing Company, Amsterdam, 1967. | | 21. Nanda J., Sapra S., Sarma D.D. et al. Size-selected zinc sulfide nano-crys-tallites: Synthesis, structure, and optical studies. Chem. Mater. 2000. 12. P. 1018-1024. https://doi.org/10.1021/cm990583f. https://doi.org/10.1021/cm990583f | | 22. Bacherikov Yu.Yu., Korsunska N.E., Kladko V.P., Venger E.F., Baran N.P., Kuchuk A.V., Zhuk A.G. Structural transformations in ZnS:Cu in the course of thermal annealing. Semiconductors. 2012. 46, No. 2. P. 188-192. https://doi.org/10.1134/S1063782612020030. https://doi.org/10.1134/S1063782612020030 | | 23. Bacherikov Yu.Yu., Vorona I.P., Zhuk A.G., Okhrimenko O.B., Kurichka R.V., Tarasov G.G. Photoluminescence properties of ZnS:Mn single crystal effected by defect drift in electric and pulsed magnetic fields. J. Lumin. 2018. 204. P. 548-553. https://doi.org/10.1016/j.jlumin.2018.08.047. https://doi.org/10.1016/j.jlumin.2018.08.047 | | 24. Bouamama K., Lebga N., Kassali K. High-pressure calculations of the elastic properties of ZnSxSe1−x alloy in the virtual-crystal approximation. High Pressure Research. 2005. 25, No. 3. P. 217-225. https://doi.org/10.1080/08957950500259041. https://doi.org/10.1080/08957950500259041 | |
|
|