Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 253-259 (2020).


References

1. Rodionov M.A., Rozhkov V.A. Antireflection properties of erbium oxide films. Techn. Phys. Lett. 2005. 31. P. 77-78.
https://doi.org/10.1134/1.1859507
2. Rodionov M.A., Rozhkov V.A. Silicon passivated by insulating erbium oxide films. Techn. Phys. Lett. 2005. 31. P. 115-116.
https://doi.org/10.1134/1.1877619
3. Hubbard K.J., Schlom D.G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 1996. 11. P. 2757-2776.
https://doi.org/10.1557/JMR.1996.0350
4. Al-Kuhaili M.F., Durrani S.M.A. Optical properties of erbium oxide thin films deposited by electron beam evaporation. Thin Solid Films. 2007. 515. P. 2885-2890.
https://doi.org/10.1016/j.tsf.2006.08.048
5. Gritsenko D.V., Shaimeev S.S., Atuchin V.V. et al. Two-band conduction in TiO2. Phys. Solid State. 2006. 48. P. 224-228.
https://doi.org/10.1134/S1063783406020053
6. Wilk G.D., Wallace R.M., Anthony J.M. High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001. 89. P. 5243-5275.
https://doi.org/10.1063/1.1361065
7. Mikhelashvili V., Eisenstein G., Edelman F. et al. Structural and electrical properties of electron beam gun evaporated Er2O3 insulator thin films. J. Appl. Phys. 2004. 95. P. 613-620.
https://doi.org/10.1063/1.1633342
8. Alfian Noviyanto, Dang-Hyok Yoon. Rare-earth oxide additives for the sintering of silicon carbide. Diamond and Related Materials. 2013. 38. P. 124-130.
https://doi.org/10.1016/j.diamond.2013.07.003
9. Cho Y.S., Heo J.S., Kim J.C., Moon S.H. Monitoring of an interlayer between Si(100) and a TiO2 layer formed during cyclic CVD. Chemical Vapor Deposition. 2006. 12. P. 659-664.
https://doi.org/10.1002/cvde.200506455
10. Savkina N.S., Ratnikov V.V., Rogachev A.Yu. et al. Structure and properties of silicon carbide grown on porous substrate by vacuum sublimation epitaxy. Semiconductors. 2002. 36. P. 758-762.
https://doi.org/10.1134/1.1493745
11. Mynbaeva M.G., Lavrent'ev A.A., Kuznetsov N.I. et al. Semi-insulating silicon carbide layers obtained by diffusion of vanadium into porous 4H-SiC. Semiconductors. 2003. 37. P. 594-597.
https://doi.org/10.1134/1.1575367
12. Bacherikov Yu.Yu., Dmitruk N.L., Konakova R.V. et al. Effect of rapid thermal annealing on the properties of thin dielectric films of gadolinium, titanium, and erbium oxides on the silicon carbide surface. Techn. Phys. 2007. 52. P. 253-257.
https://doi.org/10.1134/S106378420702017X
13. Konakova R.V., Kolomys O.F., Lytvyn O.S. et al. Transformation of a SiC/por-SiC/TiO2 structure during rapid thermal annealing. Semiconductors. 2012. 46. P. 1221-1224.
https://doi.org/10.1134/S1063782612090114
14. Bacherikov Yu.Yu., Konakova R.V., Okhrimenko O.B. et al. Optical properties of thin erbium oxide films formed by rapid thermal annealing on SiC substrates with different structures. SPQEO. 2017. 20. P. 465-469.
https://doi.org/10.15407/spqeo20.04.465
15. Bacherikov Yu.Yu., Dmitruk N.L., Konakova R.V. et al. Formation of titanium oxide films on the surface of porous silicon carbide. Techn. Phys. 2008. 53. P. 1232-1235.
https://doi.org/10.1134/S1063784208090168
16. Bacherikov Yu.Yu., Konakova R.V., Okhrimenko O.B. et al. Thin dysprosium oxide films formed by rapid thermal annealing on porous SiC substrates. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21. P. 360-364.
https://doi.org/10.15407/spqeo21.04.360
17. Bacherikov Yu.Yu., Konakova R.V., Lytvyn O.S. et al. Morphology and optical properties of titanium-doped porous silicon carbide layers. Techn. Phys. Lett. 2006. 32. P. 140-142.
https://doi.org/10.1134/S1063785006020167
18. Okhrimenko O.B. Effect of buffer layer of porous silicon carbide on formation of the interface with the oxide layer (review). Optoelectronics and Semi-conductor Technics. 2012. 47. P. 24-39 (in Russian).
19. Berezovska N.I., Bacherikov Yu.Yu., Konakova R.V. et al. Characterization of porous silicon carbide according to absorption and photo-luminescence spectra. Semiconductors. 2014. 48. P. 1028-1030.
https://doi.org/10.1134/S1063782614080041
20. Bacherikov Yu.Yu., Konakova R.V., Okhrimenko O.B. et al. Effect of por-SiC buffer layer on the parameters of thin Er2O3 layers on silicon carbide substrates. Mater. Sci. Eng. 2015. 81. P. 012019.
https://doi.org/10.1088/1757-899X/81/1/012019
21. Babushkina N.V. Study of the composition of dysprosium oxide films by using IR spectroscopy. Pis'ma v Zhurnal Tekhnich. Fiziki. 1994. 20, issue 4. P. 41-44 (in Russian).
22. Polupan G., Torchynska T.V. Surface phonons and exciton-polariton coupling in SiC nanocrystals. Thin Solid Films. 2010. 518. P. S208-S211.
https://doi.org/10.1016/j.tsf.2009.10.090
23. Patrick Lyle, Choyke W.J. Photoluminescence of radiation defects in ion-implanted 6H-SiC. Phys. Rev. B. 1972. 5. P. 3253-3259.
https://doi.org/10.1103/PhysRevB.5.3253
24. Choyke W.J., Patrick Lyle. Photoluminescence of radiation defects in cubic SiC: Localized modes and Jahn-Teller effect. Phys. Rev. B. 1971. 4. P. 1843-1847.
https://doi.org/10.1103/PhysRevB.4.1843
25. Gorban' I.S., Rud'ko S.N. Optical properties of silicon carbide crystals. Fiz. Tverd. Tela. 1963. 5. P. 1368-1372 (in Russian).
26. Ki-Hwan Lee, Seung-Koo Lee, Ki-Seok Jeon. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing. Appl. Surf. Sci. 2009. 255. P. 4414-4420.
https://doi.org/10.1016/j.apsusc.2008.11.047
27. Rittenhouse T.L., Bohn P.W., Hossain T.K. et al. Surface-state origin for the blueshifted emission in anodically etched porous silicon carbide. J. Appl. Phys. 2004. 95. P. 490-496.
https://doi.org/10.1063/1.1634369
28. Higashi E., Tajima M., Hoshino N., Hayashi T. et al. Defect observation in SiC wafers by room-temperature photoluminescence mapping. Materials Science in Semiconductor Processing. 2006. 9. P. 53-57.
https://doi.org/10.1016/j.mssp.2006.01.007
29. Bacherikov Yu.Yu., Dmitruk N.L., Konakova R.V. et al. Comparison of properties inherent to thin titanium oxide films formed by rapid thermal annealing on SiC and porous SiC substrates. SPQEO. 2018. 21. P. 200-205.
https://doi.org/10.15407/spqeo21.02.200