Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 267-270 (2020).


References

1. Kolobov A.V. Tominaga J. Two-Dimensional Transition-Metal Dichalcogenides. Springer, Switzerland, 2016.
https://doi.org/10.1007/978-3-319-31450-1
2. Omkaram I., Hong Y.K., Kim S. Transition Metal Dichalcogenide Photodetectors. IntechOpen, UK, 2018.
https://doi.org/10.5772/intechopen.72295
3. Wonbong C., Choudhary N., Han G.H. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today. 2017. 20. P. 116-130.
https://doi.org/10.1016/j.mattod.2016.10.002
4. Vora M.M., Vora A.M. Stacking faults in Re doped MoSe2 single crystals. Chalcogenide Lett. 2008. 5. P. 65-71.
5. Vora M.M., Vora A.M. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond. 2012. 33. P. 062001(1-5).
https://doi.org/10.1088/1674-4926/33/1/012001
6. Vora A.M. Effect of indium intercalation on various properties of MoSe2 single crystals. Cryst. Res. Tech. 2007. 42. P. 286-289.
https://doi.org/10.1002/crat.200610814
7. Vora M.M., Vora A.M. Anisotropy of the optical absorption in layered single crystals. Cryst. Res. Tech. 2006. 41. P. 803-806.
https://doi.org/10.1002/crat.200510673
8. Vora M.M., Vora A.M. Anisotropy of the optical absorption in layered single crystals of MoRe0.001Se1.999. Cryst. Res. Tech. 2007. 42. P. 50-53.
https://doi.org/10.1002/crat.200610769
9. Vora M.M., Vora A.M. Intercalation and anisotropy of optical absorption of MoRe0.005Se1.995 single crystal. Cryst. Res. Tech. 2007. 42. P. 186-189.
https://doi.org/10.1002/crat.200610794
10. Vora M.M., Vora A.M. Electrical properties measurements of InxMoSe2 (0 ≤ x ≤ 1) single crystal. Chalcogenide Lett. 2007. 4. P. 77-83.
11. Vora M.M., Vora A.M. Intrinsic stacking fault in single crystal of InxMoSe2 (0 ≤ x ≤ 1). Chalcogenide Lett. 2007. 4. P. 85-88.
12. Vora M.M., Vora A.M. Effect of rhenium doping on various properties of MoSe2 single crystal. Chalcogenide Lett. 2007. 4. P. 97-100.
https://doi.org/10.1002/chin.200723013
13. Vora M.M., Vora A.M. Stacking faults in Re doped MoSe2 single crystals. Chalcogenide Lett. 2008. 5. P. 35-37.
14. Vora A.M. Effect of rhenium doping on various properties of MoRe0.001Se1.999 single crystal. Chalcogenide Lett. 2008. 5. P. 17-20.
15. Vora M.M., Vora A.M. Stacking faults in the single crystals. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2009. 12. P. 421-423.
https://doi.org/10.15407/spqeo12.04.421
16. Vora A.M. Electrical properties measurements of Re doped MoSe2 single crystals. African Phys. Rev. 2011. 6. P. 129-135.
17. Vora M.M., Vora A.M. Stacking faults in the single crystals. African Phys. Rev. 2011. 6. P. 137-141.
https://doi.org/10.1088/1674-4926/33/6/062001
18. Vora M.M., Vora A.M. Stacking faults in the single crystals. J. Electron. Dev. 2012. 12. P. 719-724.
19. Vora A.M. Effect of Rhenium Doping on Various Properties of Single Crystals of MoSe2. LAP LAMBERT Academic Publishing, Germany, 2015.
20. Agarwal M.K., Patel P.D., Gupta S.K. Effect of doping MoSe2 single crystals with rhenium. J. Cryst. Growth. 1993. 129. P. 559-562.
https://doi.org/10.1016/0022-0248(93)90491-E
21. Agarwal M.K., Gupta S.K. Energetic band location of rhenium doped MoSe2 single crystals to assess their usefulness in PEC solar cell fabrication. Cryst. Res. Tech. 1993. 28. P. 567-571.
https://doi.org/10.1002/crat.2170280428
22. Hu S.Y., Liang C.H., Tiong K.K., Huang Y.S. Effect of Re dopant on the electrical and optical properties of MoSe2 single crystals. J. Alloys Comp. 2007. 442. P. 249-251.
https://doi.org/10.1016/j.jallcom.2006.08.360
23. Rybak O.V., Lun' Y.O., Bordun I.M., Omelyan M.F. Crystal growth and properties of PbI2 doped with Fe and Ni. Inorgan. Mater. 2005. 41. P. 1124-1127.
https://doi.org/10.1007/s10789-005-0271-1
24. Rybak O., Blonskii I.V., Bilyi Y.M. et al. Lumi-nescent spectra of PbI2 single crystals doped by 3d-metal impurities. J. Lumin. 1998. 79. P. 257-267.
https://doi.org/10.1016/S0022-2313(98)00041-6
25. Hicks W.T. Semiconducting behaviour of substituted tungsten diselenide and its analogues. J. Electrochem. Soc. 1964. 111. P. 1058-1065.
https://doi.org/10.1149/1.2426317