Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 271-275 (2020).


References

1. Mahajan A. and Skromme B.J. Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes. Solid-State Electron. 2005. 49. P. 945-955.
https://doi.org/10.1016/j.sse.2005.03.020
2. Matsunami H. Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 2006. 83. P. 2-4.
https://doi.org/10.1016/j.mee.2005.10.012
3. Baliga B.J. Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications. Woodhead Publ. 2018.
4. Furno M., Bonani F. and Ghione G. Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide. Solid-State Electron. 2007. 51. P. 466-474.
https://doi.org/10.1016/j.sse.2007.01.028
5. Latreche A. Reverse bias-dependence of Schottky barrier height on silicon carbide: influence of the temperature and donor concentration. Int. J. Phys. Res. 2014. 2. P. 40-49.
https://doi.org/10.14419/ijpr.v2i2.3120
6. Sze S.M. and Ng Kwok K. Physics of Semiconductor Devices. John Wiley & Sons, Inc., 2007.
https://doi.org/10.1002/0470068329
7. Wellenhofer G. and Rossler U. Global band structure and near-band-edge states. phys. status solidi (b). 1997. 202. P. 107-123.
https://doi.org/10.1002/1521-3951(199707)202:1<107::AID-PSSB107>3.0.CO;2-9
8. Rhoderick E.H. Metal-semiconductor contacts. IEEPROC. 1982. 129. P. 1-14. https://ieeexplore.ieee.org/document/4642597.
https://doi.org/10.1049/ip-i-1.1982.0001
9. Chang C.Y., Sze S.M. Carrier transport across metal-semiconductor barriers. Solid-State Electron. 1970. 13. P. 727-740.
https://doi.org/10.1016/0038-1101(70)90060-2
10. Eriksson J., Rorsman N. and Zirath H. 4H-silicon carbide Schottky barrier diodes for microwave applications. IEEE Trans. Microwave Theory Technol. 2003. 51. P. 796-804. https://ieeexplore.ieee.org/document/1191732.
https://doi.org/10.1109/TMTT.2003.808610
11. Tsu R. and Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973. 22. P. 562-564.
https://doi.org/10.1063/1.1654509
12. Latreche A. and Ouennoughi Z. Modified Airy function method modeling of tunneling current for Schottky barrier diodes on silicon carbide. Semicond. Sci. Technol. 2013. 28. P. 105003.
https://doi.org/10.1088/0268-1242/28/10/105003
13. Zheng L., Joshi R.P. and Fazi C. Effects of barrier height fluctuations and electron tunnelling on the reverse characteristics of 6H-SiC Schottky contacts. J. Appl. Phys. 1999. 85. P. 3701-3707.
https://doi.org/10.1063/1.369735
14. Rhoderick E.H. and Williams R.H. Metal-Semiconductor Contact. Oxford: Oxford University Press, 1988.
15. Osvald J. and Dobročka E. Generalized approach to the parameter extraction from I-V characteristics of Schottky diodes. Semicond. Sci. Technol. 1996. 11. P. 1198-1202.
https://doi.org/10.1088/0268-1242/11/8/014
16. Ivanov P.A., Grekhov I.V., Potapov A.S. et al. Excess leakage currents in high-voltage 4H-SiC Schottky diodes. Semiconductors. 2010. 44. P. 653-656.
https://doi.org/10.1134/S1063782610050180
17. Vassilevski K.V., Nikitina I.P., Wright N.G. et al. Device processing and characterization of high temperature silicon carbide Schottky diodes. Microelectron. Eng. 2006. 83. P. 150-154.
https://doi.org/10.1016/j.mee.2005.10.041
18. Latreche A. Combination of thermionic emission and tunneling mechanisms to analyze the leakage current in 4H-SiC Schottky barrier diodes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2019. 22. P. 19−25.
https://doi.org/10.15407/spqeo22.01.019
19. Latreche A. Combined thermionic emission and tunneling mechanisms for the analysis of the leakage current for Ga2O3 Schottky barrier diodes. SN Appl. Sci. 2019. 1. P. 188.
https://doi.org/10.1007/s42452-019-0192-2
20. Götz W., Schöner A., Pensl G. et al. Nitrogen donors in 4H-silicon carbide. J. Appl. Phys. 1993. 73. P. 3332−3338.
https://doi.org/10.1063/1.352983
21. Lomakina G.A. and Vodakov Y.A. Comparative investigation of the anisotropy of electrical conductivity in various SiC polytypes. Sov. Phys. Solid State. 1973. 15. P. 83.
22. Harima H., Nakashima S.I., Uemura T. Raman scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H- and 6H-SiC. J. Appl. Phys. 1995. 78. P. 1996−2005.
https://doi.org/10.1063/1.360174
23. Son N.T., Chen W.M., Kordina O. et al. Electron effective masses in 4H SiC. Appl. Phys. Lett. 1995. 66. P. 1074−1076.
https://doi.org/10.1063/1.113576