Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 261-271 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.261


References

1. Sussmann R.S., ed. CVD Diamond for Electronic Devices and Sensors. John Wiley&Sons. Chichester, UK, 2009. https://doi.org/10.1002/9780470740392

2. Satoshi K., Hitoshi U., Julien P., Mariko S., eds. Power Electronics Device Applications of Diamond Semiconductors. Elsevier, 2018.

3. Kato H., Oyama K., Makino T. et al. Diamond bipolar junction transistor device with phosphorusdoped diamond base layer. Diam. Relat. Mater. 2012. 27-28. P. 19-22. https://doi.org/10.1016/j.diamond.2012.05.004

4. Iwasaki T., Yaita J., Kato H. et al. 600 V diamond junction field-effect transistors operated at 200 ?C. IEEE Electron Device Lett. 2014. 35. P. 241-243. https://doi.org/10.1109/LED.2013.2294969

5. Volpe P.-N., Muret P., Pernot J. et al. High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer. phys. status solidi. 2010. 207. P. 2088-2092. https://doi.org/10.1002/pssa.201000055

6. Bormashov V.S., Terentiev S.A., Buga S.G. et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique. Diam. Relat. Mater. 2017. 75. P. 78-84. https://doi.org/10.1016/j.diamond.2017.02.006

7. Lysakovskyi V.V., Novikov N.V., Ivakhnenko S.A. et al. Growth of structurally perfect diamond single crystals at high pressures and temperatures. Review. J. Superhard Mater. 2018. 40. P. 315-324. https://doi.org/10.3103/S1063457618050039

8. Wentorf R.H., Bovenkerk H.P. Preparation of semiconducting diamonds. J. Chem. Phys. 1962. 36. P. 1987-1990. https://doi.org/10.1063/1.1732815

9. Utyuzh A., Timofeev Y., Rakhmanina A. Effect of boron impurity on the Raman spectrum of synthetic diamond. Inorg. Mater. 2004. 40. P. 926-931. https://doi.org/10.1023/B:INMA.0000041323.35298.dd

10. Kovalenko T.V., Ivakhnenko S.A. Properties of diamonds seed-grown in the magnesium-carbon system. J. Superhard Mater. 2013. 35. P. 131-136. https://doi.org/10.3103/S1063457613030015

11. Kovalenko T.V., Ivakhnenko S.A., Lysakovsky V.V. et al. Defect-and-impurity state of diamond single crystals grown in the Fe-Mg-Al-C system. J. Superhard Mater. 2017. 39. P. 83-87. https://doi.org/10.3103/S1063457617020022

12. Zubkov V., Solomnikova A., Koliadin A., Butler J.E. Analysis of doping anisotropy in multisectorial boron-doped HPHT diamonds. Mater. Today Commun. 2020. 24. P. 100995. https://doi.org/10.1016/j.mtcomm.2020.100995

13. Klepikov I.V., Koliadin A.V., Vasilev E.A. Analysis of type IIb synthetic diamond using FTIR spectrometry. IOP Conf. Ser. Mater. Sci. Eng. 2017. 286. 012035. https://doi.org/10.1088/1757-899X/286/1/012035

14. Howell D., Collins A.T., Loudin L.C. et al. Automated FTIR mapping of boron distribution in diamond. Diam. Relat. Mater. 2019. 96. P. 207- 215. https://doi.org/10.1016/j.diamond.2019.02.029

15. Solomnikova A., Lukashkin V., Zubkov V., Kuznetsov A., Solomonov A. Carrier concentration variety over multisectoral boron-doped HPHT diamond. Semicond. Sci. Technol. 2020. 35. P. 095005. https://doi.org/10.1088/1361-6641/ab9a5f

16. Chepugov A., Ivakhnenko S., Garashchenko V. The study of large semiconducting boron doped single crystal diamond sectorial structure. phys. status solidi. 2014. 11. P. 1431-1434. https://doi.org/10.1002/pssc.201300633

17. Kim H., Vogelgesang R., Ramdas A.K. et al. Electronic Raman and infrared spectra of acceptors in isotopically controlled diamonds. Phys. Rev. B. 1998. 57. P. 15315-15327. https://doi.org/10.1103/PhysRevB.57.15315

18. Pruvost F., Bustarret E., Deneuville A. Characteristics of homoepitaxial heavily borondoped diamond films from their Raman spectra. Diam. Relat. Mater. 2000. 9. P. 295-299. https://doi.org/10.1016/S0925-9635(99)00241-1

19. Blank V.D., Denisov V.N., Kirichenko A.N. et al. Raman scattering by defect-induced excitations in boron-doped diamond single crystals. Diam. Relat. Mater. 2008. 17. P. 1840-1843. https://doi.org/10.1016/j.diamond.2008.07.004

20. Bernard M., Deneuville A., Muret P. Nondestructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy. Diam. Relat. Mater. 2004. 13. P. 282-286. https://doi.org/10.1016/j.diamond.2003.10.051

21. Ushizawa K., Watanabe K., Ando T. et al. Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond. Diam. Relat. Mater. 1998. 7. P. 1719-1722. https://doi.org/10.1016/S0925-9635(98)00296-9

22. Kovalenko T.V., Lysakovskyi V.V., Kvasnytsya V.M. et al. Morphology of diamond single crystals grown in the Fe-Co-Mg-C system. J. Cryst. Growth. 2019. 507. P. 327-331. https://doi.org/10.1016/j.jcrysgro.2018.11.040

23. Li R.F., Thomson G.B., White G. et al. Integration of crystal morphology modeling and on-line shape measurement. AIChE J. 2006. 52. P. 2297-2305. https://doi.org/10.1002/aic.10818

24. Raabe D., Sachtleber M. Measurement of plastic strains by 3D image correlation photogrammetry at the grain scale, MPI fur Eisenforschung GmbH, Dusseldorf, Germany, 2003.

25. Pajerowski D.M., Ng R., Peterson N. et al. 3D scanning and 3D printing AlSi10Mg single crystal mounts for neutron scattering. Rev. Sci. Instrum. 2020. 91. P. 053902. https://doi.org/10.1063/5.0008599

26. Ager J.W., Walukiewicz W., McCluskey M. et al. Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 1995. 66. P. 616-618. https://doi.org/10.1063/1.114031

27. Tallaire A., Kasu M., Ueda K., Makimoto T. Origin of growth defects in CVD diamond epitaxial films. Diam. Relat. Mater. 2008. 17. P. 60-65. https://doi.org/10.1016/j.diamond.2007.10.003

28. Bormashov V.S., Tarelkin S.A., Buga S.G. et al. Electrical properties of the high quality borondoped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater. 2013. 35. P. 19-23. https://doi.org/10.1016/j.diamond.2013.02.011

29. Blank V.D., Bormashov V.S., Tarelkin S.A. et al. Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater. 2015. 57. P. 32-36. https://doi.org/10.1016/j.diamond.2015.01.005