Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 272-276 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.272


References

1. Chopra K., Paulson P. and Dutta V. Thin-film solar cell: an overview. Prog. Photovolt.: Res. Appl. 2004. 12. P. 69-92. https://doi.org/10.1002/pip.541

2. Green M. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovolt.: Res. Appl. 2009. 17. P. 183-189. https://doi.org/10.1002/pip.892

3. Delbos S. Kesterite thin films for photovoltaics: a review. EPJ Photovolt. 2012. 3. P. 35004p1- 35004p13. https://doi.org/10.1051/epjpv/2012008

4. Schorr S., Hoebler H.-J. and Tovar M. A neutron diffraction study of the stannite-kesterite solid solution series. Eur. J. Mineralogy. 2007. 19. P. 65-73. https://doi.org/10.1127/0935-1221/2007/0019-0065

5. Patel K.K., Shah D.V. and Kherajl V. Effects of annealing on structural properties of copper zinc tin sulphide (CZTS) material. Journal of Nano and Electronic Physics. 2013. 5, No 2. P. 02031 (3 p.).

6. Wei M., Du Q., Wang D., Liu W., Jiang G., and Zhu C. Synthesis of spindle-like kesterite Cu2ZnSnS4 nanoparticles using thiorea as sulfur source. Mater. Lett. 2012. 79. P. 177-179. https://doi.org/10.1016/j.matlet.2012.03.080

7. Zhou Y., Zhou W., Du Y.F. and Wu S. Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett. 2011. 56. P. 1535-1537. https://doi.org/10.1016/j.matlet.2011.03.013

8. Mirzayev M.N., Abdurakhimov B.A., Demir E. et al. Investigation of the formation of defects under fast neutrons and gamma irradiation in 3C-SiC nano powder. Physica B. 2021. 611. P. 412842- 412849. https://doi.org/10.1016/j.physb.2021.412842

9. Fernandes P.A., Salome P.M.P. and da Cunha A.F. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compds. 2011. 509. P. 7600-7606. https://doi.org/10.1016/j.jallcom.2011.04.097

10. Pareek D., Balasubramaniam K. and Sharma P. Synthesis and characterization of bulk Cu2ZnSnX4 (X: S, Se) via thermodynamically supported mechano-chemical process. Mater. Charact. 2015. 103. P. 42-49. https://doi.org/10.1016/j.matchar.2015.03.014

11. Himmrich M., Haeuseler H. Far infrared studies on stannite and wurtzstannite type compounds. Spectrochim. Acta A. 1991. 47. P. 933-942. https://doi.org/10.1016/0584-8539(91)80283-O

12. Khadka D.B. and Kim J.H. Structural transition and band gap tuning of Cu2(Zn,Fe)SnS4 chalcogenide for photovoltaic application. J. Phys. Chem. C. 2014. 118. P. 14227-14237. https://doi.org/10.1021/jp503678h

13. Fernandes P.A., Salome P.M.P. and da Cunha A.F. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films. 2009. 517. P. 2519-2523. https://doi.org/10.1016/j.tsf.2008.11.031

14. Schneider J. and Kirby R.D. Raman scattering from ZnS polytypes. Phys. Rev. B. 1972. 6, No 4. P. 1290- 1294. https://doi.org/10.1103/PhysRevB.6.1290

15. Redinger A., Berg D.M., Dale P.J. and Siebentritt S. The consequences of kesterite equilibria for efficient solar cells. J. Am. Chem. Soc. 2011. 133, No 10. P. 3320-3323. https://doi.org/10.1021/ja111713g

16. Weber A., Mainz R., and Schock H.W. On the Sn loss from thin films of the material system Cu-Zn- Sn-S in high vacuum. J. Appl. Phys. 2010. 107, No 1. P. 013516(1-6). https://doi.org/10.1063/1.3273495

17. Timmo K., Altosaar M., Raudoja J. et al. Sulfurcontaining Cu2ZnSnSe4 monograin powders for solar cells. Solar Energy Materials and Solar Cells. 2010. 94, No 11. P. 1889-1892. https://doi.org/10.1016/j.solmat.2010.06.046

18. Xie M., Zhuang D., Zhao M. et al. Fabrication of Cu2ZnSnS4 thin films using a ceramic quaternary target. Vacuum. 2014. 101. P. 146-150. https://doi.org/10.1016/j.vacuum.2013.08.001

19. Lee J.H., Choi H.J., Kim W.M. et al. Effect of preannealing on the phase formation and efficiency of CZTS solar cell prepared by sulfurization of Zn/(Cu,Sn) precursor with H2S gas. Solar Energy. 2016. 136, No 15. P. 499-504. https://doi.org/10.1016/j.solener.2016.07.031

20. Katagiri H., Jimbo K., Yamada S. et al. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Exp. 2008. 1. P. 041201. https://doi.org/10.1143/APEX.1.041201

21. Maurya D.K., Sikarwar S., Chaudhary P., Angaiah S. and Yadav B.C. Synthesis and characterization of nanostructured copper zinc tin sulphide (CZTS) for humidity sensing applications. IEEE Sensors J. 2019. 19, No 8. P. 2837-2846. https://doi.org/10.1109/JSEN.2018.2890309

22. Das K., Panda S.K., Gorai S., Mishra P. and Chaudhuri S. Effect of Cu/In molar ratio on the microstructural and optical properties of microcrystalline CuInS2 prepared by solvothermal route. Mater. Res. Bull. 2008. 43, No 10. P. 2742-2750. https://doi.org/10.1016/j.materresbull.2007.10.013

23. Patel M., Mukhopadhyay I., Ray A. Structural, electrical and optical properties of spray deposited CZTS thin films in non-equilibrium growth condition. J. Phys. D: Appl. Phys. 2012. 45. P. 445103. https://doi.org/10.1088/0022-3727/45/44/445103

24. Gorai S., Ganguli D. and Chaudhuri S. Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process. Cryst. Growth Des. 2005. 5, No 3. P. 875-877. https://doi.org/10.1021/cg0496787