Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 312-318 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.312
References
1. Novikov V.N., Sokolov A.P. A correlation between low-energy vibrational spectra and first sharp diffraction peak in chalcogenide glasses. Solid State Commun. 1991. 77. P. 243-247.
https://doi.org/10.1016/0038-1098(91)90341-R
2. Sokolov A.P., Kisliuk A., Quitmann D., Duval E. Evaluation of density of vibrational states of glasses from low-frequency Raman spectra. Phys. Rev. B. 1993. 48. P. 7692-7695.
https://doi.org/10.1103/PhysRevB.48.7692
3. Ivanda M., Hartmann I., Kiefer W. Boson peak in the Raman spectra of amorphous gallium arsenide: Generalization to amorphous tetrahedral semiconductors. Phys. Rev. B. 1995. 51. P. 1567-1574.
https://doi.org/10.1103/PhysRevB.51.1567
4. Tikhomirov V.K., Sarantopoulou E., Perakis A., Raptis C. On the scattering mechanisms responsible for the boson peak in glasses. Solid State Commun. 1999. 109. P. 433-438.
https://doi.org/10.1016/S0038-1098(98)00517-1
5. Arsova D., Nesheva D., Perakis A., Raptis C. A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1?x and (GeS2)x(As2S3)1?x glasses. Glas. Phys. Chem. 2000. 26. P. 247-251.
6. Boulmetis Y.C., Perakis A., Raptis C. et al. Composition and temperature dependence of the low-frequency Raman scattering in Ge-As-S glasses. J. Non. Cryst. Solids. 2004. 347. P. 187-196.
https://doi.org/10.1016/j.jnoncrysol.2004.06.032
7. Borjesson L., Hassan A.K., Swenson J., Torell L.M., Fontana A. Is there a correlation between the first sharp diffraction peak and the low frequency vibrational behavior of glasses? Phys. Rev. Lett. 1993. 70. P. 1275-1278.
https://doi.org/10.1103/PhysRevLett.70.1275
8. Ribeiro M.C.C. Intermolecular vibrations and fast relaxations in supercooled ionic liquids. J. Chem. Phys. 2011. 134. P. 244507.
9. Uchino T. Structure and properties of amorphous silica and its related materials: Recent developments and future directions. J. Ceram. Soc. Jpn. 2005. 113. P. 17-25.
https://doi.org/10.2109/jcersj.113.17
https://doi.org/10.1063/1.3604533
10. Baldi G., Giordano V.M., Monaco G., Ruta B. Sound attenuation at terahertz frequencies and the boson peak of vitreous silica. Phys. Rev. Lett. 2010. 104. P. 195501.
https://doi.org/10.1103/PhysRevLett.104.195501
11. Nakamura M., Arai M., Inamura Y., Otomo T., Bennington S.M. Dynamical properties of vitreous silica around the first sharp diffraction peak. Phys. Rev. B. 2003. 67. P. 064204.
https://doi.org/10.1103/PhysRevB.67.064204
12. Mitsa V., Feher A., Petretskyi S. et al. Hysteresis of low-temperature thermal conductivity and boson peak in glassy (g) As2S3: Nanocluster contribution. Nanoscale Res. Lett. 2017. 12. P. 345.
https://doi.org/10.1186/s11671-017-2125-6
13. Shatnawi M.T.M. The first sharp diffraction peak in the total structure function of amorphous chalcogenide glasses: Anomalous characteristics and controversial views. New J. Glas. Ceram. 2016. 06. P. 37-46.
https://doi.org/10.4236/njgc.2016.63005
14. Stronski A., Achimova E., Paiuk O. et al. Optical and electron-beam recording of surface relief's using Ge5As37S58-Se nanomultilayers as registering media. J. Nano Res. 2016. 39. P. 96-104.
https://doi.org/10.4028/www.scientific.net/JNanoR.39.96
15. Stronski A., Achimova E., Paiuk O. et al. Holographic and e-beam image recording in Ge5As37S58-Se nanomultilayer structures. Nanoscale Res. Lett. 2016. 11. P. 39.
https://doi.org/10.1186/s11671-016-1235-x
16. Stronski A., Revutska L., Meshalkin A. et al. Structural properties of Ag-As-S chalcogenide glasses in phase separation region and their application in holographic grating recording. Opt. Mater. (Amst). 2019. 94. P. 393-397.
https://doi.org/10.1016/j.optmat.2019.06.016
17. Stronski A.V., Achimova E., Paiuk O., Meshalkin A. et al. Direct magnetic relief recording using As40S60:Mn-Se nanocomposite multilayer structures. Nanoscale Res. Lett. 2017. 12. P. 286.
https://doi.org/10.1186/s11671-017-2060-6
18. Poulsen H.F., Neuefeind J., Neumann H.-B., Schneider J.R., Zeidler M.D. Amorphous silica studied by high energy X-ray diffraction. J. Non. Cryst. Solids. 1995. 188. P. 63-74.
https://doi.org/10.1016/0022-3093(95)00095-X
19. Krogh-Moe J. A method for converting experimental X-ray intensities to an absolute scale. Acta Crystallogr. 1956. 9. P. 951-953.
https://doi.org/10.1107/S0365110X56002655
20. Norman N. The Fourier transform method for normalizing intensities. Acta Crystallogr. 1957. 10. P. 370-373.
https://doi.org/10.1107/S0365110X57001085
21. Balyuzi H.H.M. Analytic approximation to incoherently scattered X-ray intensities. Acta Crystallogr. Sect. A Cryst. Physics, Diffraction, Theor. Gen. Crystallogr. 1975. 31. P. 600-602.
https://doi.org/10.1107/S0567739475001295
22. Faber T.E., Ziman J.M. A theory of the electrical properties of liquid metals. Phil. Mag. 1965. 11. P. 153-173.
https://doi.org/10.1080/14786436508211931
23. Theodorakopoulos N., Jackle J. Low-frequency Raman scattering by defects in glasses. Phys. Rev. B. 1976. 14. P. 2637-2641.
https://doi.org/10.1103/PhysRevB.14.2637
24. Uzun S.S., Sen S., Benmore C.J., Aitken B.G. Compositional variation of short- and intermediaterange structure and chemical order in Ge-As sulfide glasses: A neutron diffraction study. J. Phys. Chem. C. 2008. 112. P. 7263-7269.
https://doi.org/10.1021/jp7115388
25. Soyer-Uzun S., Sen S., Aitken B.G. Network vs molecular structural characteristics of Ge-doped arsenic sulfide glasses: A combined neutron/X-ray diffraction, extended X-ray absorption fine structure, and Raman spectroscopic study. J. Phys. Chem. C. 2009. 113. P. 6231-6242.
https://doi.org/10.1021/jp810446g
26. Elliott S.R. Origin of the first sharp diffraction peak in the structure factor of covalent glasses. Phys. Rev. Lett. 1991. 67. P. 711-714.
https://doi.org/10.1103/PhysRevLett.67.711
27. Elliott S.R. Second sharp diffraction peak in the structure factor of binary covalent network glasses. Phys. Rev. B. 1995. 51. P. 8599-8601.
https://doi.org/10.1103/PhysRevB.51.8599
28. Bychkov E., Benmore C.J., Price D.L. Compositional changes of the first sharp diffraction peak in binary selenide glasses. Phys. Rev. B. 2005. 72. P. 172107.
https://doi.org/10.1103/PhysRevB.72.172107
| |
|
|