Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 319-327 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.319


References

1. Green M.A. Third Generation Photovoltaics. Advanced Solar Energy Conversion. Springer, 2006.

2. Sachenko A.V., Gorban A.P., Kostylyov V.P., Serba A.A., Sokolovskyi I.O. Comparative analysis of photoconversion efficiency in the Si solar cells under concentrated illumination for the standard and rear geometries of arrangement of contacts. Semiconductors. 2007. 41, No 10. P. 1214-1223. https://doi.org/10.1134/S106378260710017X

3. Zin N., Blakers A., McIntosh K. et al. 19% Efficient n-type all-back-contact silicon wafer solar cells with planar front surface. Proc. 49th Australian Solar Energy Society's (AuSES) Conf., Sydney, Australia, Nov. 30 - Dec. 2, 2011.

4. Sachenko A.V., Kostylyov V.P., Vlasyuk V.M. et al. The influence of the exciton nonradiative recombination in silicon on the photoconversion efficiency. Proc. 32 European Photovoltaic Solar Energy Conf. and Exhib., Munich, Germany, 20-24 June 2016. P. 141-147.

5. Richter A., Glunz S., Werner F. et al. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B. 2012. 86. P. 165202: 1-14. https://doi.org/10.1103/PhysRevB.86.165202

6. Fossum J.G. Computer-aided numerical analysis of silicon solar cells. Solid State Electron. 1976. 19, No 4. P. 269-277. https://doi.org/10.1016/0038-1101(76)90022-8

7. Green M.A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Solar Energy Materials and Solar Cells. 2008. 92. P. 1305-1310. https://doi.org/10.1016/j.solmat.2008.06.009

8. Sachenko A., Kostylyov V., Sokolovskyi I., and Evstigneev M. Effect of temperature on limit photoconversion efficiency in silicon solar cells. IEEE J. Photovolt. 2020. 10. P. 63-69. https://doi.org/10.1109/JPHOTOV.2019.2949418

9. Schenk A. Finite-temperature full random-phase approximation mode of band gap narrowing for silicon device simulation. J. Appl. Phys. 1998. 84, No 7. P. 3684-3695. https://doi.org/10.1063/1.368545

10. Trupke T., Green M.A., Wurfel P. et al. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 2003. 94, No 8. P. 4930-4937. https://doi.org/10.1063/1.1610231

11. Sachenko A.V., Kostylyov V.P., Kulish N.R. et al. Model of efficiency of multijunction solar cell. Semiconductors. 2014. 48, No 5. P. 675-682. https://doi.org/10.1134/S1063782614050182

12. Yoshikawa K., Yoshida W., Irie T. et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Solar Energy Materials and Solar Cells. 2017. 173. P. 37-42. https://doi.org/10.1016/j.solmat.2017.06.024

13. Richter A., Benick J., Feldmann F. et al. n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Solar Energy Materials and Solar Cells. 2017. 173. P. 96-105. https://doi.org/10.1016/j.solmat.2017.05.042

14. Sachenko A.V., Kostylyov V.P., Vlasiuk V.M. et al. Features in the formation of a recombination current in the space charge region of silicon solar cells. Ukr. J. Phys. 2016. 61, No 10. P. 917-922.

15. Sachenko A.V., Kostylyov V.P., Sokolovskyi I.O. et al. Specific features of current flow in ?-Si: H/Si heterojunction solar cells. Techn. Phys. Lett. 2017. 43, No 2. P. 152-155. https://doi.org/10.1134/S1063785017020109