Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (4) P. 036-041 (2007).
DOI: https://doi.org/10.15407/spqeo10.04.036


References

1. A.K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics // Phys. Rev. B 34, p. 5883 (1986).
https://doi.org/10.1103/PhysRevB.34.5883
2. Y. Saya, S. Watanabe, M. Kawai, H. Yamada, K. Matsushige, Investigation of nonswitching regions in ferroelectric thin films using scanning force microscopy // Jpn J. Appl. Phys. 39, p. 3799 (2000).
https://doi.org/10.1143/JJAP.39.3799
3. M. Alexe, C. Harnagea, D. Hesse, U. Gosele, Polarization imprint and size effects in mesoscopic ferroelectric structures // Appl. Phys. Lett. 79, p. 242 (2001).
https://doi.org/10.1063/1.1385184
4. I. Szafraniak, C. Harnagea, R. Scholz, et al., Ferroelectric epitaxial nanocrystals obtained by a self-patterning method // App. Phys. Lett. 83, p. 2211 (2003).
https://doi.org/10.1063/1.1611258
5. W. Ma, and D. Hesse, Polarization imprint in ordered arrays of epitaxial ferroelectric nanostructures // App. Phys. Lett. 84, p. 2871 (2004).
https://doi.org/10.1063/1.1703835
6. A.N. Morozovska, E.A. Eliseev, S.L. Bravina, and S.V. Kalinin, Resolution function theory in piezoresponse force microscopy: domain wall profile, spatial resolution, and tip calibration // Phys. Rev. B. 75(17), 174109-1-18 (2007).
https://doi.org/10.1103/PhysRevB.75.174109
7. F. Felten, G.A. Schneider, J.M. SaldaƱa, and S.V. Kalinin, Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy // J. Appl. Phys. 96, p. 563 (2004).
https://doi.org/10.1063/1.1758316
8. D.A. Scrymgeour and V. Gopalan, Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall // Phys. Rev. B 72, 024103 (2005).
https://doi.org/10.1103/PhysRevB.72.024103
9. A. N. Morozovska, E.A. Eliseev, and S.V. Kalinin, The piezoelectric surface layers recognition by piezoresponse force microscopy // J. Appl. Phys. 102(7), 074105-1-12 (2007).
https://doi.org/10.1063/1.2785824
10. A. N. Morozovska, E.A. Eliseev, and S.V. Kalinin, Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy // Appl. Phys. Lett. 89, 192901 (2006).
https://doi.org/10.1063/1.2378526
11. A.N. Morozovska, S.V. Kalinin, E.A. Eliseev, and S.V. Svechnikov, Polarization screening effect on local polarization switching mechanism and hysteresis loop measurements in piezoresponse force microscopy // Ferroelectrics 354, p.198-207(2007).
https://doi.org/10.1080/00150190701454966
12. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, and S.V. Kalinin, Extrinsic size effect in piezoresponse force microscopy of thin films // Phys. Rev. B 76(5), 054123-1-5 (2007).
https://doi.org/10.1103/PhysRevB.76.054123
13. N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films // Phys. Rev. Lett. 80, p.1988 (1998).
https://doi.org/10.1103/PhysRevLett.80.1988
14. V. Nagarajan, J. Junquera, J.Q. He, C.L. Jia, R. Waser, K. Lee, Y.K. Kim, S. Baik, T. Zhao, R. Ramesh, Ph. Ghosez, and K.M. Rabe, Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures // J. Appl. Phys. 100, 051609 (2006).
https://doi.org/10.1063/1.2337363
15. C. Lichtensteiger, J.-M. Triscone, Javier Junquera and Ph. Ghosez, Ferroelectricity and tetragonality in ultrathin PbTiO3 films // Phys. Rev. Lett. 94, 047603 (2005).
https://doi.org/10.1103/PhysRevLett.94.047603
16. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, and C. Thompson, Ferroelectricity in ultrathin perovskite films // Science 304, p. 1650 (2004).
https://doi.org/10.1126/science.1098252
17. A.N. Morozovska, E.A. Eliseev, S.V. Svechnikov, V. Gopalan, S.V. Kalinin // E-print arxiv: 08014086.