Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (4) P. 054-059 (2007).
DOI: https://doi.org/10.15407/spqeo10.04.054


References

1. J.M. Barker, D.K. Ferry, D.D. Koleske, and R.J. Shul, Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models // J. Appl. Phys. 97, p. 063705- 10 (2005).
https://doi.org/10.1063/1.1854724
2. M. Farahmand et al., Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries // IEEE Transactions on Electron Devices 48 (3), p. 535- 542 (2001).
https://doi.org/10.1109/16.906448
3. N. Mansour, K.W. Kim, N.A. Bannov, and M.A. Littlejohn, Transient ballistic transport in GaN // J. Appl. Phys. 81 (6), p. 2901-2903 (1997).
https://doi.org/10.1063/1.363952
4. V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, Phase-plane analysis and classification of transient regimes for high-field electron transport in nitride semiconductors // J. Appl. Phys. 96 (11), p. 6492-6503 (2004).
https://doi.org/10.1063/1.1808900
5. M.J. Manfra, N. Weimann, Y. Baeyens, P. Roux, and D.M. Tennant, Unpassivated AlGaN/GaN HEMTs with CW power density of 3.2 W/mm at 25 GHz grown by plasma-assisted MBE // Electron. Lett. 39 (8), p. 694-695 (2003).
https://doi.org/10.1049/el:20030451
6. V. Kumar, A. Kuliev, R. Schwindt, M. Muir, G. Simin, J. Yang, M. Asif Khan, and I. Adesida, High performance 0.25 µm gate-length AlGaN/GaN HEMTs on sapphire with power density of over 4.5 W/mm at 20 GHz // Solid-State Electron. 47 (9), p. 1577-1580 (2003).
https://doi.org/10.1016/S0038-1101(03)00078-9
7. V.V. Mitin, V.A. Kochelap and M. Stroscio, Quantum Heterostructures: Microelectronics and Optoelectronics. Cambridge University Press, New York, 1999 (Chap. 7).
8. E.A. Barry, K.W. Kim, and V.A. Kochelap, Hot electrons in group-III nitrides at moderate electric fields // Appl. Phys. Lett. 80 (13), p. 2317-2319 (2002).
https://doi.org/10.1063/1.1464666
9. C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials // Rev. Mod. Phys. 55(3), p. 645-705 (1983).
https://doi.org/10.1103/RevModPhys.55.645
10. W. Fawcett, A.D. Boardman and S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide // J. Chem. Solids 31, p. 1963 (1970).
https://doi.org/10.1016/0022-3697(70)90001-6
11. H.D. Rees, Calculation of distribution functions by exploiting the stability of the steady state // J. Phys. Chem. Solids 30, p. 643-655 (1969).
https://doi.org/10.1016/0022-3697(69)90018-3
12. M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, 2001.
13. I.M. Dykman, P.M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors. Naukova Dumka, Kyiv, 1981 (in Russian).
14. Z.S. Gribnikov, V.A. Kochelap, Cooling of current carries under scattering of energy on optical vibrations of the lattice // Zh. Eksp. Teor. Fiz. 58 (3), p.1046-1056 (1970) [Sov. Phys. - JETP 31(3), 562 (1970)].
15. R.I. Rabinovich, On galvanomagnetic phenomena under hot-electron energy scattering on optical phonons // Fiz. Techn. Poluprovodn. 3 (7), p. 996- 1004 (1969) [Sov. Phys. - Semicond. 3(7), 839 (1969)].
16. L. Varani, J.C. Vaissiere, E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani and J.H. Zhao, Monte Carlo calculation of THz generation in nitrides // Phys. status solidi (a) 190 (1), p. 247-256 (2002).
https://doi.org/10.1002/1521-396X(200203)190:1<247::AID-PSSA247>3.0.CO;2-M