Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (4) P. 054-059 (2007).
DOI:
https://doi.org/10.15407/spqeo10.04.054
References
1. J.M. Barker, D.K. Ferry, D.D. Koleske, and R.J. Shul, Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models // J. Appl. Phys. 97, p. 063705- 10 (2005). https://doi.org/10.1063/1.1854724 | | 2. M. Farahmand et al., Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries // IEEE Transactions on Electron Devices 48 (3), p. 535- 542 (2001). https://doi.org/10.1109/16.906448 | | 3. N. Mansour, K.W. Kim, N.A. Bannov, and M.A. Littlejohn, Transient ballistic transport in GaN // J. Appl. Phys. 81 (6), p. 2901-2903 (1997). https://doi.org/10.1063/1.363952 | | 4. V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, Phase-plane analysis and classification of transient regimes for high-field electron transport in nitride semiconductors // J. Appl. Phys. 96 (11), p. 6492-6503 (2004). https://doi.org/10.1063/1.1808900 | | 5. M.J. Manfra, N. Weimann, Y. Baeyens, P. Roux, and D.M. Tennant, Unpassivated AlGaN/GaN HEMTs with CW power density of 3.2 W/mm at 25 GHz grown by plasma-assisted MBE // Electron. Lett. 39 (8), p. 694-695 (2003). https://doi.org/10.1049/el:20030451 | | 6. V. Kumar, A. Kuliev, R. Schwindt, M. Muir, G. Simin, J. Yang, M. Asif Khan, and I. Adesida, High performance 0.25 µm gate-length AlGaN/GaN HEMTs on sapphire with power density of over 4.5 W/mm at 20 GHz // Solid-State Electron. 47 (9), p. 1577-1580 (2003). https://doi.org/10.1016/S0038-1101(03)00078-9 | | 7. V.V. Mitin, V.A. Kochelap and M. Stroscio, Quantum Heterostructures: Microelectronics and Optoelectronics. Cambridge University Press, New York, 1999 (Chap. 7). | | 8. E.A. Barry, K.W. Kim, and V.A. Kochelap, Hot electrons in group-III nitrides at moderate electric fields // Appl. Phys. Lett. 80 (13), p. 2317-2319 (2002). https://doi.org/10.1063/1.1464666 | | 9. C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials // Rev. Mod. Phys. 55(3), p. 645-705 (1983). https://doi.org/10.1103/RevModPhys.55.645 | | 10. W. Fawcett, A.D. Boardman and S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide // J. Chem. Solids 31, p. 1963 (1970). https://doi.org/10.1016/0022-3697(70)90001-6 | | 11. H.D. Rees, Calculation of distribution functions by exploiting the stability of the steady state // J. Phys. Chem. Solids 30, p. 643-655 (1969). https://doi.org/10.1016/0022-3697(69)90018-3 | | 12. M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, 2001. | | 13. I.M. Dykman, P.M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors. Naukova Dumka, Kyiv, 1981 (in Russian). | | 14. Z.S. Gribnikov, V.A. Kochelap, Cooling of current carries under scattering of energy on optical vibrations of the lattice // Zh. Eksp. Teor. Fiz. 58 (3), p.1046-1056 (1970) [Sov. Phys. - JETP 31(3), 562 (1970)]. | | 15. R.I. Rabinovich, On galvanomagnetic phenomena under hot-electron energy scattering on optical phonons // Fiz. Techn. Poluprovodn. 3 (7), p. 996- 1004 (1969) [Sov. Phys. - Semicond. 3(7), 839 (1969)]. | | 16. L. Varani, J.C. Vaissiere, E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani and J.H. Zhao, Monte Carlo calculation of THz generation in nitrides // Phys. status solidi (a) 190 (1), p. 247-256 (2002). https://doi.org/10.1002/1521-396X(200203)190:1<247::AID-PSSA247>3.0.CO;2-M | |
|
|