Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (4) P. 375-378 (2009).
DOI: https://doi.org/10.15407/spqeo12.04.375


References

1. O.Ya. Olikh and I.V. Ostrovsky, Increase of electron diffusion length in p-Si crystals under ultrasound action // Fizika tverdogo tela 44 (7), p. 1198-1202 (2002), in Russian.
https://doi.org/10.1134/1.1494617
2. A.A. Podolyan, V.I. Khivrych, Ultrasound influence on the radiation defects treatment in silicon at the room temperatures // Technical Physics Letters 31 (10), p. 11-16 (2005), in Russian.
https://doi.org/10.1134/1.1931783
3. A.P. Onanko, A.A. Podolyan, I.V. Ostrovsky, Ultrasound treatment influence on the internal friction in silicon // Technical Physics Letters 29 (15), p. 40-44 (2003), in Russian.
https://doi.org/10.1134/1.1606771
4. Ya.M. Olikh, N.D. Timochko, A.P. Dolgolenko, Acoustic-wave-stimulated transformations of radiation defects in γ-irradiated n-type silicon crystals // Technical Physics Letters 32 (13), p. 67- 73 (2006), in Russian.
https://doi.org/10.1134/S106378500607011X
5. V.M. Babych, O.P. Dolgolenko, Ya.M. Olikh, M.D. Tymochko, Ultrasound influence on the electrical activity of radiation defects in γ-irradiated n-type silicon crystals // Nuclear Physics and Atomic Energy 1 (19), p. 95-102 (2007), in Ukrainian.
6. V.M. Babych, Ya.M. Olikh, M.D. Tymochko, About differences of stationary and dynamic ultrasound on electrical activity of radiation defects in γ-irradiated n-type silicon crystals obtained by zone melting // 6-th Intern. Confer."Actual Problems of Semiconductor Physics", Drogobych University Publ., September 23-26, 2008, р. 177 (in Ukrainian).
7. L.F. Makarenko, V.P. Markevych, L.I. Murin, Reconstructed thermodonors in silicon - defects with U<0 // Fizika i tekhnika poluprovodnikov 19 (11), p. 1935-1939 (1985) (in Russian).
8. V.M. Babych, M.I. Bletskan, E.F. Venger, Oxygen in Silicon Monocrystals. Interpress LTD, Kyiv, 1997 (in Russian).
9. B.N. Mukashev, Kh.A. Abdullin, Yu.V. Gorelkinsky, Metastable and bistable defects in silicon // Uspekhi fizicheskikh nauk 170 (2), p. 143-155 (2000), in Russian.
https://doi.org/10.3367/UFNr.0170.200002b.0143
10. S.S. Moliver, Method of an open envelope for the electronic structure of silicon divacancy // Fizika tverdogo tela 41 (3), p. 404-410 (1999), in Russian.
https://doi.org/10.1134/1.1130784
11. J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II. Experimental Aspects. Mir, Moscow, 1985 (in Russian).
12. M.T. Asom, J.L. Benton, R. Sauer, and L.C. Kimerling, Interstitial defect reactions in silicon // Appl. Phys. Lett. 51 (4), p. 256-258 (1987).
https://doi.org/10.1063/1.98465
13. L.W. Song, B.W. Benson, and G.D. Watkins, Identification of a bistable in silicon: The carbon interstitial-carbon subsitutional pair // Appl. Phys. Lett. 51 (15), p. 1155-1157 (1987).
https://doi.org/10.1063/1.98717
14. V.S. Vavilov, V.F. Kiselev, B.N. Mukashev, Defects in Silicon and on its Surface. Nauka Publ., Moscow, 1990 (in Russian).
15. I.D. Konozenko, A.K. Semenjuk, V.I. Khivrych, Radiation Effects in Silicon. Naukova dumka, Kyiv, 1974 (in Russian).
16. G.E. Jellison, Transient capacitance studies of an electron trap at EC-ET = 0.105 eV in phosphorusdoped silicon // J. Appl. Phys. 53 (8), p. 5715-5719 (1982).
https://doi.org/10.1063/1.331459
17. A.P. Dolgolenko, P.G. Lytovchenko, M.D. Varentsov, G.P. Gaidar, A.P. Lytovchenko, Peculiarity of radiation defects creation in silicon with a low and high free oxygen concentration // Zbirnyk naukovykh prats' institutu yadernykh doslidzhen' No. 2(15), p. 106-114 (2003), in Russian.