Semiconductor Physics, Quantum Electronics and Optoelectronics, 13 (4) P. 337-342 (2010).
DOI: https://doi.org/10.15407/spqeo13.04.337


References

1. F.E. Shubert, Light-Emitting Diodes, Cambridge University Press (2006).
https://doi.org/10.1017/CBO9780511790546
2. Yu. Davidenko, High-efficiency modern LEDs // Sovremennaya Elektronika no 8, p. 36-43 (2004) (in Russian).
3. H. Morkoç, Handbook of Nitride Semiconductors and Devices, Willey-VCH (2008).
https://doi.org/10.1002/9783527628445
4. V.N. Danilin, Yu.P. Dokuchaev, T.A. Zhukova, M.A. Komarov, High-Power High-Temperature Capable and Radiation-Resistant Microwave NewGeneration Devices with AlGaN/GaN Wide-Gap Heterojunction Structures. Reviews of Electronic Equipment, GUP NPP "Pulsar", Moscow (2001) (in Russian).
5. Yu.G. Shretter, Yu.T. Rebane, V.A. Zykov, V.G. Sidorov, Wide-Gap Semiconductors, Nauka, Sankt-Peterburg (2001) (in Russian).
6. T.V. Blank, Yu.A. Gol'dberg, Semiconductor photoconverters for ultraviolet spectral region. A review // Fiz. Tekh. Poluprov. 37(9), p. 1025-1055 (2003) (in Russian).
https://doi.org/10.1134/1.1610111
7. T.V. Blank, Yu.A. Gol'dberg, The mechanism of current transport in ohmic metal−semiconductor contacts. A review // Fiz. Tekh. Poluprov. 41(11), p. 1281-1308 (2007) (in Russian).
https://doi.org/10.1134/S1063782607110012
8. N. Mochida, T. Honda, T. Shirasawa, A. Inoue, T. Sakaguchi, F. Koyama, K. Iga // J. Cryst. Growth 189-190, p. 716(1998).
https://doi.org/10.1016/S0022-0248(98)00269-3
9. M.A. Nicolet, Diffusion barriers in thin films // Thin Solid Films 52(3), p. 415-443 (1978).
https://doi.org/10.1016/0040-6090(78)90184-0
10. O.A. Ageev, A.E. Belyaev, N.S. Boltovets, R.V. Konakova, V.V. Milenin, V.A. Pilipenko, Interstitial Phases in Technology for Semiconductor Devices and VLSI, NTK "Institute of Single Crystals", Kharkov (2008) (in Russian).
11. V.N. Sheremet, The making features and electrophysical properties of ohmic contacts to gallium nitride (a review) // Optoelektronika i Poluprovodnikovaya Tekhnika 44, p. 41-59 (2010) (in Russian).
12. Chung-Yu Ting, Charles Y. Chen, A study of the contacts of a diffused resistor // Solid St. Electr. 14(6), p. 433-438 (1971).
https://doi.org/10.1016/0038-1101(71)90051-7
13. V.N. Sheremet, Metrological aspects of measurement of ohmic contacts resistance // Izvestiya Vuzov. Radioelektronika 53(3), p. 3-12 (2010) (in Russian).
https://doi.org/10.3103/S0735272710030015
14. R.H. Cox, H. Strack, Ohmic contacts for GaAs devices // Solid St. Electr. 10(12), p. 1213-1218 (1967).
https://doi.org/10.1016/0038-1101(67)90063-9
15. R.D. Brooks, H.G. Mattes, Spreading resistance between constant potential surfaces // Bell Sys. Tech. J. 50(3), p. 775-784 (1971).
https://doi.org/10.1002/j.1538-7305.1971.tb01882.x
16. S.S. Cohen, Contact resistance and methods for its determination // Thin Solid Films 104(3-4), p. 361- 379 (1983).
https://doi.org/10.1016/0040-6090(83)90577-1
17. E.B. Kaganovich, S.V. Svechnikov, The methods of measurement of contact resistance of semiconductor planar structures (a review) // Optoelektronika i Poluprovodnikovaya Tekhnika 21, p. 1-11 (1991) (in Russian).
18. L.G. Russel, J.H. Michael, Y.R. Gary, The effect of lateral current spreading on the specific contact resistivity in D-Resistor Kelvin devices // IEEE Trans. Electr. Dev. 34(3), p. 537-543 (1987).
https://doi.org/10.1109/T-ED.1987.22960
19. N. Stavitski, M.J.H. van Dal, J.H. Klootwijk, R.A.M. Wolters, A.Y. Kovalgin, J. Schmitz, CrossBridge Kelvin Resistor (CBKR) structures for silicide-semiconductor junctions characterization, in Proc. 9th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, 23- 24 Nov 2006, Veldhoven, The Netherlands, p. 436- 438 (2006).
20. H.H. Berger, Contact resistance and contact resistivity // J. Electrochem. Soc. 119(4), p. 507- 514 (1972).
https://doi.org/10.1149/1.2404240
21. H.H. Berger, Models for contacts to planar devices // Solid St. Electr. 15(2), p. 145-158 (1972).
https://doi.org/10.1016/0038-1101(72)90048-2
22. H. Murrmann, D. Wiedmann, Current crowding on metal contacts to planar devices // IEEE Trans. Electr. Dev. 16(12), p. 1022-1024 (1969).
https://doi.org/10.1109/T-ED.1969.16904
23. H. Murrmann, D. Wiedmann, Messung des Übergangswiderstandes zwischen Metall und Diffusionsschicht in Si-Planarelementen // Solid St. Electr. 12(11), p. 879-886 (1969).
https://doi.org/10.1016/0038-1101(69)90045-8
24. G.K. Reeves, H.B. Harrison, Obtaining the specific contact resistance from transmission line model measurement // IEEE Electron Device Lett. 3(5), p. 111-113 (1982).
https://doi.org/10.1109/EDL.1982.25502
25. A.N. Andreev, M.G. Rastegaeva, V.P. Rastegaev, S.A. Reshanov, To the problem of accounting for current spreading in a semiconductor when determining the transient resistance of ohmic contacts // Fiz. Tekh. Poluprov. 32(7), p. 832-838 (1998) (in Russian).
https://doi.org/10.1134/1.1187496
26. G.K. Reeves, Specific contact resistance using a circular transmission line model // Solid St. Electr. 23(5), p. 487-490 (1980).
https://doi.org/10.1016/0038-1101(80)90086-6
27. D. Sawdai, Enhanced transmission line model structures for accurate resistance evaluation of small-size contacts and for more reliable fabrication // IEEE Trans. Electron. Dev. 46(7), p. 1302-1311 (1999).
https://doi.org/10.1109/16.772468
28. M. Lijadi, F. Pardo, N. Bardou, J. Pelouard, Floating contact transmission line modelling: An improved method for ohmic contact resistance measurement // Solid St. Electr. 49(10) p. 1655- 1661 (2005).
https://doi.org/10.1016/j.sse.2005.06.023
29. A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, L.M. Kapitanchuk, V.P. Kladko, R.V. Konakova, Ya.Ya. Kudryk, A.V. Kuchuk, O.S. Lytvyn, V.V. Milenin, V.N. Sheremet, Yu.N. Sveshnikov, Development of high-stable contact systems to gallium nitride microwave diodes // SQO 10(4), p. 1-8 (2007).
30. S. Noor Mohammad, Contact mechanisms and design principles for alloyed ohmic contacts to nGaN // J. Appl. Phys. 95(12), p. 7940-7953 (2004).
https://doi.org/10.1063/1.1712016
31. M. Pidun, P. Karduck, J. Mayer, K. Heime, B. Shineller, T. Walther, Auger depth profile analysis and EFTEM analysis of annealed Ti/Alcontacts on Si-doped GaN // Appl. Surf. Sci. 179(1- 4), p. 213-221 (2001).
https://doi.org/10.1016/S0169-4332(01)00282-3
32. S. Ruvimov, Z. Liliental-Weber, J. Washburn, D. Qiao, S.S. Lau, Paul K. Chu, Microstructure of Ti/Al ohmic contacts for n-AlGaN // Appl. Phys. Lett. 73(18), p. 2582-2584 (1998).
https://doi.org/10.1063/1.122512
33. W. Gotz, N.M. Johnson, C. Chen, H. Liu, C. Kuo, W. Imler, Activation energies of Si donors in GaN // Appl. Phys. Lett. 68(22), p. 3144-3146 (1996).
https://doi.org/10.1063/1.115805
34. A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, V.P. Klad'ko, R.V. Konakova, Ya.Ya. Kudryk, A.V. Kuchuk, V.V. Milenin, Yu.N. Sveshnikov, V.N. Sheremet, On the tunnel mechanism of current flow in Au−TiBx−n-GaN-i-Al2O3 Schottky barrier diodes // SQO 10(3), p. 1-5 (2007).
35. V.V. Evstropov, Yu.V. Zhilyaev, M. Dzhumaeva, N. Nazarov, Tunnel-excess current in III−V nondegenerate barrier p-n and m-s structures on Si // Fiz. Tekh. Poluprov. 31(2), p .152-158 (1997) (in Russian).
https://doi.org/10.1134/1.1187092
36. J.K. Shen, Y.K. Su, G.C. Chi, W.C. Chen, C.Y. Chen, C.N. Huang, J.M. Hong, Y.C. Yu, C.W. Wang, E.K. Lin, The effect of thermal annealing on thermal annealing on the Au/Ni contact of p-GaN // J. Appl. Phys. 83(6), p. 3172-3175 (1998).
https://doi.org/10.1063/1.367084
37. S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, Fabrication and performance of GaN electronic devices // Mat. Sci. Eng. R 30(3-6), p. 55-212 (2000).
https://doi.org/10.1016/S0927-796X(00)00028-0