1. Silicon Carbide-recent Major Advances, Wolfgang J. Choyke, Hiroyuki Matsunami, Gerhard Pensl, 79, December, 2003.
2.
Silicon Carbide: A Review of Fundamental Questions and Applications to
Current Device Technology, Wolfgang J. Choyke, Hiroyuki Matsunami,
Gerhard Pensl, June, 1997.
3. A. Fissel, About
heteropolytypic structures: molecular beam epitaxy, characterization
and properties of silicon carbide, in: Recent Research Developments in
Material Science & Engineering, ed. S.G. Pandalai (Transworld
Research Network, Fort P.O., Trivandrum, India). Vol. 1, Part 1, p.
277-327 (2002).
4. J. Fridel, Dislocations. Pergamon Press, 1964.
5. Tugas Mesin, Nanocrystalline Metals: Stalking Faults and Slip. SABTU, October 11, 2008.
6.
S.W. Lee, S.I. Vlaskina, V.I. Vlaskin, I.V. Zaharchenko, V.A. Gubanov,
G.N. Mishinova, G.S. Svechnikov, V.E. Rodionov, S.A. Podlasov, Silicon
carbide defects and luminescence centers in current heated 6H-SiC.
Semiconductor Physics, Quantum Electronics and Optoelectronics, 13(2),
p. 24-29 (2010).
7. S. Soloviev and D. Cherednichenko, Y.
Gao, A. Grekov et al., Forward voltage drop degradation in diffused SiC
p-i-n diodes. J. Appl. Phys. 95(8), (2004). https://doi.org/10.1063/1.1687035
8.
M.E. Twing, R.E. Stahlbush, M. Fatemi, S.D. Arthur, J.B. Fedison, J.B.
Tucker, and S. Wang, Extended defects in 4H-SiC p-i-n diodes. MRS
webside.
9. S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman,
and E. Janzén, Luminescence from stacking faults in 4H SiC. Appl. Phys.
Lett. 79, p. 3944 (2001). https://doi.org/10.1063/1.1425084
10.
Robert E. Stahlbush, Sei-Hyung Ryu, Qingchun Zhang, Husna Fatima, Sarah
Haney and Anant Agarwal, Power device degradation due to dislocations
and stacking faults in 4H-SiC epitaxy. MRS-spring meeting 2008,
Symposium D: Silicon Carbide – Materials, Processing, and Devices,
San-Francisco, CA, March 24-28, 2008.
11. Joshua D.
Caldwell, Robert E. Stahlbush, Orest J. Glembocki, Karl D. Hobart,
Eugene Imhoff, Marko J. Tadjer and Kendrick X. Liu, Influence of
Shockley stacking fault propagation and contraction on the electrical
behavior of 4H-SiC bipolar and unipolar devices. MRS-spring meeting
2008, Symposium D: Silicon Carbide – Materials, Processing, and
Devices, San-Francisco, CA, March 24-28, 2008.
14. S.I. Vlaskina, D.H. Shin, 6H to 3C polytype transformation in silicon carbide. Jpn. J. Appl. Phys. 38, p. 27-29 (1999). https://doi.org/10.1143/JJAP.38.L27
15.
S.I. Vlaskina, Mechanism of 6H-3C transformation in SiC. Semiconductor
Physics, Quantum Electronics and Optoelectronics, 5(2), p. 252-155
(2002).
16. L.S. Aivazova, Yu.M. Altaiskii, V.G. Sidyakin,
The bulk-gradient photo-emf and the homogeneity of β-SiC single
crystals. Izvestia Vysshikh Uchebnikh Zavedenii, Fizika, No. 10, p.
113-114, October, 1972 (in Russian).
19.
I.S. Gorban, G. Mishinova, The bases of luminescence diagnostic of
dislocation structure of SiC crystals. Proc. SPIE, 3359, p. 187-196
(1997). https://doi.org/10.1117/12.306212