Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 4. P. 321-327.
DOI: https://doi.org/
10.15407/spqeo15.04.321



References

1. Intel® 22nm Technology. http://www.intel.com/ content/www/us/en/silicon-innovations/intel-22nm-technology.html.
 
2. G.P. Wiederrecht (Ed.), Handbook of Nanofabri-cation. Elsevier, Academic Press, 2010.
 
3. D.G. Bucknall (Ed.), Nanolithography and Patterning Techniques in Microelectronics. Woodhead Publishing Ltd., 2005.
 
4. Yeonho Choi, Soongweon Hong, Luke P. Lee, Shadow Overlap Ion-beam Lithography for Nanoarchitectures. Nano Letters. 9, pp. 3726-3731 (2009).
https://doi.org/10.1021/nl901911p
 
5. M.S.M. Saifullah, K.R.V. Subramanian, E. Tapley et al., Sub-10 nm Electron Beam Nanolithography Using Spin-Coat able TiO2 Resists. Nano Letters. 3, pp. 1587-1591 (2003).
https://doi.org/10.1021/nl034584p
 
6. A.A. Tseng (Ed.), Tip-Based Nanofabrication: Fundamentals and Applications. Springer, 2011.
https://doi.org/10.1007/978-1-4419-9899-6
 
7. W.R. Bowen, N. Hilal (Eds.), Atomic Force Microscopy in Process Engineering. An Introduction to AFM for Improved Processes and Products. Elsevier Ltd., 2009.
 
8. H. Hertz, On the constant of elastic solids. J. Reine Angew. Math. 92, pp. 156-171 (1881).
 
9. H. Hertz. On hardness. Verh. Ver. Befrderung Geverbe Fleisses. 61, pp. 410-416 (1882).
 
10. F. Rico, P. Roca-Cusachs, N. Gavara et al., Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Physical Review E. 72, P. 021914 (10 pages) (2005).
 
11. P.M. Lytvyn, O.C. Lytvyn, P.P. Porchovyy et al., Mechanical scanning probe lithography for production of various purpose nanostructures. Proc. V Ukrainian scientific conference on physics of semiconductor (USCPS-5), Uzhgorod, Ukraine, p. 335 (2011).
 
12. K.L. Johnson, Contact Mechanics. Cambridge University Press; Reprintedition, 1987.
 
13. B.V. Derjaguin, V.M. Muller, Yu.P. Toropov, Effect of contact deformations on the adhesion of particles. J. Colloid. Interface Sci. 53, pp. 314-326 (1975).
https://doi.org/10.1016/0021-9797(75)90018-1
 
14. B.V. Derjaguin, Y.I. Rabinovich, N.V. Churaev, Direct measurement of molecular forces. Nature. 272, pp. 313-318 (1978).
https://doi.org/10.1038/272313a0
 
15. B. Cappella, G. Dietler, Force-distance curves by atomic force microscopy. Surface Science Reports. 34, pp. 1-104 (1999).
https://doi.org/10.1016/S0167-5729(99)00003-5
 
16. D.J. Maugis, Adhesion of spheres: The JKR-DMT transition using a dug dale model. J. Colloid. Interface Sci. 150 (1), pp. 243-269 (1992).
https://doi.org/10.1016/0021-9797(92)90285-T
 
17. V.M. Muller, V.S.Yushchenko, B.V. Derjaguin. On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigid Plane. J. Colloid. Interface Sci. 77, pp. 91-101 (1980).
https://doi.org/10.1016/0021-9797(80)90419-1
 
18. D. Sarid, Exploring Scanning Probe Microscopy with mathematica. Weinheim: WILEY-VCH Verlag GmbH&Co. KGaA, 2007.
 
19. B. Lennart, Hamaker constants of inorganic materials. Advances in Colloid and Interface Science. 70, pp. 125-169 (1997).
https://doi.org/10.1016/S0001-8686(97)00003-1
 
20. H.J. Butt, M. Kappl, Normal capillary forses. Advances in Colloid and Interface Science. 146 (1-2), pp. 48-60 (2009).
https://doi.org/10.1016/j.cis.2008.10.002
 
21. A.A. Efremov, P.M. Lytvyn, P.O. Anishchenko et al., Nanoprobe spectroscopy of capillary forces and its application for a real surface diagnostics. Semiconductor Physics, Quantum Electronics & Optoelectronics. 13 (2), pp. 111-124 (2010).
 
22. J.N. Israelachvili, Intermolecular and Surface Forces. CA San Diego: Academic Press, 1998.
 
23. O.C. Lytvyn, P.M. Lytvyn, I.V. Prokopenko et al., Peculiarities of the nanostructures topometry by means of atomic force microscopy. Nanosystemy, nanomaterialy, nanotehnologii. 6 (1), pp. 33-44 (2008), in Ukrainian.