Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 4. P. 376-381.
DOI: https://doi.org/
10.15407/spqeo15.04.376



References

1. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Laser-induced incandescence: Recent trends and current questions. Appl. Phys. B, 83(3), p. 333-354 (2006).
https://doi.org/10.1007/s00340-006-2260-8
 
2. L.A. Melton, Soot diagnostics based on laser heating. Appl. Opt., 23(13), p. 2201-2208 (1984).
https://doi.org/10.1364/AO.23.002201
 
3. R.L. Vander Wal, K.J. Weiland, Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction. Appl. Phys. B, 59, p. 445-452 (1994).
https://doi.org/10.1007/BF01081067
 
4. R.L. Vander Wal, Z. Zhou, M.Y. Choi, Laser-induced incandescence calibration via gravimetric sampling. Combustion and Flame, 105, p. 462-470 (1996).
https://doi.org/10.1016/0010-2180(95)00216-2
 
5. C.R. Shaddix, K.C. Smyth, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combustion and Flame, 107, p. 418-452 (1996).
https://doi.org/10.1016/S0010-2180(96)00107-1
 
6. M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Laser-induced incandescence for soot diagnostics at high pressures. Appl. Opt., 42(12), p. 2052-2062 (2003).
https://doi.org/10.1364/AO.42.002052
 
7. K.A. Thomson, K.P.Geigle, M. Kohler, G.J. Smallwood, D.R. Snelling, Optical properties of pulsed laser heated soot. Appl. Phys. B, 104, p. 307-319 (2011).
https://doi.org/10.1007/s00340-011-4449-8
 
8. S. De Iuliis, F. Cignoli, S. Maffi, G. Zizak, Influence of the cumulative effects of multiple laser pulses on laser-induced incandescence signals from soot. Appl. Phys. B, 104, p. 321-330 (2011).
https://doi.org/10.1007/s00340-011-4535-y
 
9. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc et al., Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl. Phys. B, 87, p. 503-521 (2007).
https://doi.org/10.1007/s00340-007-2619-5
 
10. S. Zelensky, Laser-induced heat radiation of suspended particles: a method for temperature estimation. J. Opt. A: Pure Appl. Opt., 1, p. 454-458 (1999).
https://doi.org/10.1088/1464-4258/1/4/306
 
11. Ju.Ju. Rulik, N.M. Mikhailenko, S.E. Zelensky, A.S. Kolesnik, Laser-induced incandescence in aqueous carbon black suspensions: the role of particle vaporization. Semiconductor Physics, Quantum Electronics & Optoelectronics, 10(2), p. 6-10 (2007).
 
12. S. Zelensky, Laser-induced heat radiation in borate glass. J. Phys.: Condens. Matter, 10, p. 7267-7272 (1998).
https://doi.org/10.1088/0953-8984/10/32/017
 
13. A.V. Kopyshinsky, Ya.P. Lazorenko, S.E. Zelensky, Laser-induced incandescence of borate glass doped with carbon microparticles. Functional Materials, 18(1), p. 116-120 (2011).
 
14. S.E. Zelensky, O.V. Kopyshinsky, V.V. Garash-chenko, A.S. Kolesnik, V.M. Stadnytskyi, K.S. Zelenska, Ye.V. Shynkarenko, Optical transmittance of carbon suspensions in polymer matrixes under powerful pulsed laser irradiation. Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(1), p. 70-73 (2010).
 
15. S.E. Zelensky, A.S. Kolesnik, O.V. Kopyshinsky, V.V. Garashchenko, K.S. Zelenska, V.M. Stadnytskyi, E.V. Shynkarenko, Thermal emission of carbon microparticles in polymer matrices under pulsed laser excitation. Ukr. J. Phys., 54(10), p. 983-988 (2009).
 
16. P. Roura, J. Costa, Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory. European J. Phys., 23, p. 191-203 (2002).
https://doi.org/10.1088/0143-0807/23/2/313
 
17. S.E. Zelensky, L.V. Poperenko, A.V. Kopyshinsky, and K.S. Zelenska, Nonlinear characteristics of laser-induced incandescence of rough carbon surfaces. Proc. SPIE, 8434, 84341H (2012).
https://doi.org/10.1117/12.921999
 
18. E.H. Sin, C.K. Ong, and H.S. Tan, Temperature dependence of interband optical absorption of silicon at 1152, 1064, 750, and 694 nm. Phys. status solidi (a), 85, p. 199-204 (1984).
https://doi.org/10.1002/pssa.2210850124
 
19. C.K. Ong, H.S. Tan, and E.H. Sin, Calculations of melting threshold energies of crystalline and amorphous materials due to pulsed-laser irradiation. Mater. Sci. Eng., 79, p. 79-85 (1986).
https://doi.org/10.1016/0025-5416(86)90389-7
 
20. A.F. Banishev, V.S. Golubev, A.Yu. Kremnev, Generation and accumulation of dislocations on the silicon surface under the action of pulse-periodic emission from a YAG:Nd laser. Technical Physics. The Russian Journal of Applied Physics, 46(8), p. 962-967 (2001).
 
21. J.M. Cole, P. Humphreys and L.G. Earwaker, A melting model for pulsed laser heating of silicon. Vacuum, 34 (10/11), p. 871-874 (1984).
https://doi.org/10.1016/0042-207X(84)90166-0
 
22. G.E. Jellison, D.H. Lowndes, D.N. Mashburn and R.F. Wood, Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam. Phys. Rev. B, 34(4), p. 2407-2415 (1986).
https://doi.org/10.1103/PhysRevB.34.2407
 
23. A. Feltz, Amorphe und Glasartige Anorganische Festkorper. Academie Verlag, Berlin, 1983.
 
24. M.H. Brodsky, R.S. Title, K. Weiser, and G.D. Pettit, Structural, optical, and electrical properties of amorphous silicon films. Phys. Rev. B, 1(6), p. 2632-2641 (1970).
https://doi.org/10.1103/PhysRevB.1.2632
 
25. Amorphous Semiconductors. Ed. by M.H. Brodsky. Springer-Verlag, Berlin, Heidelberg, New York, 1979.
 
26. Amorphous Semiconductor Technologies and Devices. Ed. Y. Hamakawa. OHMSHA, Ltd., 1983.