Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 4. P. 331-335.
DOI: https://doi.org/10.15407/spqeo16.04.331


References

1.    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog.Photovolt.: Res. Appl. 19(1), p. 84-92 (2011); 
https://doi.org/10.1002/pip.1088
 
2.    J. Y. Ahn, K.H. Jun, K.S. Lim, M. Konagai, Stable protocrystalline silicon and unstable micro-crystalline silicon at the onset of a microcrystalline regime. Appl. Phys. Lett. 82, p. 1718-1720 (2003); 
https://doi.org/10.1063/1.1561161
 
3.    A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Thin-film silicon solar cell technology. Prog. Photovolt.: Res. Appl. 12, p. 113-142 (2004);
https://doi.org/10.1002/pip.533
 
4.    V.B. Neimash, A. Kraitchinskii, M. Kras'ko, O. Puzenko, C. Claeys, E. Simoen, B. Svensson and A. Kuznetsov, Influence of tin impurities on the generation and annealing of thermal oxygen donors in Czochralski silicon at 450 °C. J. Electrochem. Soc. 147(7), p. 2727-2733, (2000). 
https://doi.org/10.1149/1.1393596
 
5.    V.B. Neimash, A.M. Kraitchinskii, M.M. Krasko, O.O. Puzenko, O.M. Kabaldin, Influence of tin impurities of the generation and annealing of low-temperature thermal oxygen donors in Czochralski silicon. Ukr. J. Phys. 45(3), p. 342-349 (2000).
 
6.    C. Claeysa, E. Simoena, V.B. Neimash, A. Kraitchinskii, M. Kras'ko, O. Puzenko, A. Blondeel and P. Clauws, Tin doping of silicon for controlling oxygen precipitation and radiation hardness. J. Electrochem. Soc. 148(12), p. G738-G745 (2001); 
https://doi.org/10.1149/1.1417558
 
7.    E. Simoen, C. Claeys, V. B. Neimash, A. Kraitchinskii, N. Krasko, O. Puzenko, A. Blondeel, and P. Clauws, Deep levels in high-energy proton-irradiated tin-doped n-type Czochralski silicon. Appl. Phys. Lett. 76(20), p. 2838-2840 (2000);
 
8.    E. Simoen, C. Claeys, A.M. Kraitchinskii et al. Solid State Phenomena, 82-84, p. 425-430 (2002).
https://doi.org/10.4028/www.scientific.net/SSP.82-84.425
 
9.    V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Yu. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, V.V. Strelchuk, The effect of Sn impurity on the optical and structural properties of thin silicon films. Semiconductors, 45(10), p. 1281-1285 (2011);
https://doi.org/10.1134/S1063782611100253
 
10.    V.B. Neimash, V.M. Poroshin, A.M. Kabaldin, V.O. Yukhymchuk, P.E. Shepeliavyi, V.A. Makara, S.Yu. Larkin, Microstructure of thin Si-Sn composite films. Ukr. J. Phys. 58(9), p. 865-871 (2013).
https://doi.org/10.15407/ujpe58.09.0865
 
11.    E. Bustarret, M.A. Hachicha, and M. Brunel, Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy. Appl. Phys. Lett. 52, p. 1675-1677 (1988); 
https://doi.org/10.1063/1.99054
 
12.    H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Communs. 39(5), p. 625-629 (1981); https://doi.org/10.1016/0038-1098(81)90337-9.
 
13.    I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communs., 58(10), p. 739-741 (1986);
https://doi.org/10.1016/0038-1098(86)90513-2
 
14.    Md.A. Mohiddon, M.G. Krishna, Growth and optical properties of Sn-Si nanocomposite thin films. J. Mater. Sci. 47(19), p. 6972-6978 (2012); 
https://doi.org/10.1007/s10853-012-6647-0
 
15.    M.A. Mohiddon, M.G. Krishna, Chap.17: Metal Induced Crystallization, in: Crystallization – Science and Technology, p. 461-480, Ed. Dr. Marcello Andreeta, InTech, 2012; DOI: 10.5772/50064. Available from: http://www.intechopen.com/books/crystallization-science-and-technology/metal-induced-crystallization-of- .
https://doi.org/10.5772/50064
 
16.    R.A. Swalin, Thermodynamics of Solids. 2nd ed. Jon Wiley and Sons, New York, 1972.