Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 4. P. 391-395.
DOI: https://doi.org/10.15407/spqeo18.04.391


References

1.    H. Eisele, R. Kamua, Submillimeter–Wave InP Gunn Devices. IEEE Trans. MTT, 52(10), p. 2371-2378 (2004).
https://doi.org/10.1109/TMTT.2004.835974
 
2.    H. Eisele, 480 GHz oscillator with an InP Gunn device. Electron. Lett. 46(6), p. 422-423 (2010).
https://doi.org/10.1049/el.2010.3362
 
3.    V. Papageorgiou, A. Khalid, C. Li, D.R.S. Cum-ming, Cofabrication of planar Gunn diode and HEMT on InP substrate. IEEE Trans. Electron. Dev. 61(8), p. 2279-2784 (2014).
https://doi.org/10.1109/TED.2014.2331368
 
4.    M.I. Maricar, A. Khalid, G. Dunn, D. Cumming, C.H. Oxley, Experimentally estimated dead space for GaAs and InP based planar Gunn diodes. Semicond. Sci. Technol. 30, p. 012001-012005 (2015).
https://doi.org/10.1088/0268-1242/30/1/012001
 
5.    N. Braslau, J.B. Gunn, J.L. Staples, Metal-semi-conductor contact for GaAs bulk effect devices. Solid–State Electron. 10(5), p. 381-383 (1967).
https://doi.org/10.1016/0038-1101(67)90037-8
 
6.    P. Auray, A. Guivarc'h, H.L'Haridon, J.P. Mercier, Formation, microstructure et resistances des contacts Au-Ge/n-GaAs, Au-Ge/n-InP, Au-Zn/p-InP et Au-Be/p-InP. Thin Solid Films, 127(1), p. 39-68 (1985).
 
7.    R.T. Tung, The physics and chemistry of the Schottky barrier height. J. Appl. Phys. Rev. 1, p. 011304-1-01130454 (2014).
 
8.    T. Clausen, O. Leistiko, Metallurgical optimization for ohmic contacts to InP using conventional metallization schemes. Microelectron. Eng. 18(4), p. 305-325 (1992).
https://doi.org/10.1016/0167-9317(92)90131-A
 
9.    M.A. Abraham, S-Y. Yu, W.H. Choi, R.T.P. Lee, S.E. Mohney, Very low resistance alloyed Ni-based ohmic contacts to InP-capped and uncapped n+In0.53Ga0.47As. J. Appl. Phys. 116(16), p. 1645061-1645066 (2014).
https://doi.org/10.1063/1.4900535
 
10.    Wu Degi, Ding Wuchang, Yang Shansham, Jia Rui, Jin Zhi, Liu Xinyi, Optimization of ohmic contact for InP-based transferred electronic devices. J. Semiconductors, 35(3), p. 036001-036005 (2014).
https://doi.org/10.1088/1674-4926/35/3/036001
 
11.    P. Jian, D.G. Ivey, R. Bruce, G. Knight, Ohmic contact formation in palladium-based metalli-zations to n-type InP. J. Electron. Mater. 23(9), p. 953-962 (1994).
https://doi.org/10.1007/BF02655370
 
12.    P. Maltsev, Yu. Fedorov, R. Galiev, S. Mi-khailovich, D. Gnatyuk, Millimeter range nitride devices. Nanoindustry, 3(49), p. 40-51 (2014).
 
13.    A. Dargys, J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP. Sci and Encyclopedia Publ., Vilnius, 1994.
 
14.    S.J. Pearton, Processing of Wide Band Gap Semi-conductors: Growth, Processing and Applications. Noyes Publ. Park Ridge. New Jersey, 2000.
 
15.    A.V. Sachenko, A.E. Belyaev, N.S. Boltovets et al., Features of temperature dependence of contact resistivity in ohmic contacts on lapped n-Si. J. Appl. Phys. 112(6), p. 063703-0637035 (2012).
https://doi.org/10.1063/1.4752715
 
16.    V.P. Kladko, A.V. Kuchuk, P.M. Lytvyn et al., Substrate effects on the strain relaxation in GaN/AlN short-period superlattices. Nanosc. Res. Lett. 7(1), p. 289-299 (2012).
https://doi.org/10.1186/1556-276X-7-289
 
17.    S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices. 3rd ed. Wiley, New Jersey, 2007.
 
18.    A.V. Sachenko, A.E. Belyaev, N.S. Boltovets et al., Mechanism of contact resistance formation in ohmic contacts with high dislocation density. J. Appl. Phys. 111(8), p. 083701-083709 (2012).
https://doi.org/10.1063/1.3702850