Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N
4. P. 448-451. References 1. A. Galeckas, H. Kortegaard Nielsen, J. Linnros, A. Hallén, B.G. Svensson, and P. Pirouz, Investigation of stacking fault formation in hydrogen bombarded 4H-SiC. Mater. Sci. Forum, 483-485, p. 327-330 (2005). https://doi.org/10.4028/www.scientific.net/MSF.483-485.327 2. S.I. Maximenko, T. Sudarshan, and P. Pirouz, Investigation of the electrical activity of partial dislocations in SiC p-i-n diodes. Appl. Phys. Lett. 87(3), 033503-0–033503-3 (2005). 3. A. Galeckas, and J. Linnros, P. Pirouz, Recombination induced stacking faults: Evidence for a general mechanism in hexagonal SiC. Phys. Rev. Lett. 96(2), 025502-1–025502-4 (2006). https://doi.org/10.1103/PhysRevLett.96.025502 4. S.I. Maximenko, P. Pirouz and T.S. Sudarshan, Open core dislocations and surface energy of SiC. Mater. Res. Forum, 527-529, p. 439-442 (2006). https://doi.org/10.4028/www.scientific.net/msf.527-529.439 5. P. Pirouz, M. Zhang, H. McD. Hobgood, M. Lancin, J. Douin, and B. Pichaud, Nitrogen doping and multiplicity of stacking faults in SiC. Phil. Mag. A, 86(29-31), p. 4685-4697 (2006). https://doi.org/10.1080/14786430600724470 6. H. Idrissi, B. Pichaud, G. Regula, and M. Lancin, 30º Si partial dislocation mobility in nitrogen-doped 4H-SiC. J. Appl. Phys. 101, 113533 (2007). https://doi.org/10.1063/1.2745266 7. G.R. Fisher, P. Barnes, Towards a unified view of polytypism in silicon carbide. Phil. Mag., Part B, 61, Issue 2, p. 217-236 (1990). 8. Shin Sugiyama, MotohiroTogaya, Phase relationship between 3C- and 6H-Silicon Carbide at high pressure and high temperature. J. Amer. Ceram. Soc. 84, issue 12, p. 3013-3016 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01129.x 9. S.I. Vlaskina, Mechanism of 6H-3C transformation in SiC. Semiconductor Physics, Quantum Electronics and Optoelectronics, 5(2), p. 252-255 (2002). 10. M. Durandurdu, An initio simulations of the structural phase transformation of 2H-SiC at high pressure. Phys. Rev. B, 75, p. 235204 (2007). https://doi.org/10.1103/PhysRevB.75.235204 11. C. Raffy, J. Furthmüller and F. Beshtedt, Properties of interface between cubic and hexagonal polytypes in Silicon Carbide. J. Phys.: Condenced Matter, 14, p. 12725-12731 (2002). https://doi.org/10.1088/0953-8984/14/48/309 12. A. Romano, J. Li, S. Yip, Atomistic simulation of rapid compression of fractured silicon carbide. J. Nucl. Mater. 352, p. 22-28 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.038 13. Fuyuki Shimojo, Ingvar Ebbsjö, Rajiv K. Kalia et al., Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys. Rev. Lett. 84, p. 3338-3341 (2000). https://doi.org/10.1103/PhysRevLett.84.3338 14. S. Juillaguet, T. Robert, J. Camassel, Optical investigation of stacking faults in 4H-SiC epitaxial layers: Comparison of 3C and 8H polytypes. Mater. Sci. and Eng. B, 165, p. 5-8 (2009). https://doi.org/10.1016/j.mseb.2008.11.004 15. A. Bauer, P. Reischauer, J. Kräusslich et al., Structure refinement of the silicon carbide polytypes 4H and 6H: Unambiguous detemination of the refinement parameters. Acta Cryst. A, 57, p. 60-67 (2001). https://doi.org/10.1107/S0108767300012915 16. B. Wen, J. Zhao, M.J. Bucknum et al., First-principles studies of diamond polytypes. Diamond & Related Materials, 17, p. 356-364 (2008). https://doi.org/10.1016/j.diamond.2008.01.020 17. F. Herman, J.P. van Duke, R.L. Kortum, Electronic structure and spectrum of Silicon Carbide. Mat. Res. Bul. 4, p. S167-S178 (1969). https://doi.org/10.1016/b978-0-08-006768-1.50020-6 18. S. Shinozaki, K.R. Kisman, Aspects of "one dimensional disorder" in Silicon Carbide. Acta Metallurgica, 26, p. 769-776 (1978). https://doi.org/10.1016/0001-6160(78)90027-5 19. L.U. Ogbuji, T.E. Mitchell, A.H. Heuer, The β→α transformation in polycrystalline SiC: The thickening of α plates. J. Amer. Ceram. Soc. 64(2), p. 91-99 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb09583.x 20. Kozuaki Kobayashi, Shojiro Komatsu, First-principle study of 8H-, 10H- 12H- and 18H-SiC polytypes. J. Phys. Soc. Jpn. 024714 (13 p.) (2012). 21. I.S. Gorban and G.N. Mishinova, Basics of luminescent diagnostics of the dislocation structure of SiC crystals. Proc. SPIE, 3359, p. 187 (1998). https://doi.org/10.1117/12.306212 22. S.I. Vlaskina, D.H. Shin, 6H to 3C polytype transformation in Silicon Carbide. Jpn. J. Appl. Phys. 38, p. 27-29 (1999). https://doi.org/10.1143/JJAP.38.L27 23. S.I. Vlaskina, G.N. Mishinova, V.I. Vlaskin, V.E. Rodionov, G.S. Svechnikov, 6H-3C transformation in heated cubic Silicon Carbide 3C-SiC. Semiconductor Physics, Quantum Electronics and Optoelectronics, 14(4), p. 432-437 (2011). https://doi.org/10.15407/spqeo14.04.432 24. S.I. Vlaskina, G.N. Mishinova, V.I. Vlaskin, G.S. Svechnikov, V.E. Rodionov, S.W. Lee, Silicon Carbide phase transition in as grown 3C-6H – polytypes junction. Semiconductor Physics, Quantum Electronics and Optoelectronics, 16(2), p. 132-136 (2013). https://doi.org/10.15407/spqeo16.02.132 25. S.I. Vlaskina, G.N. Mishinova, V.I. Vlaskin, V.E. Rodionov, G.S. Svechnikov, 8H-, 10H-, 14H-SiC formation in 6H-3C silicon carbide phase transitions. Semiconductor Physics, Quantum Electronics and Optoelectronics, 16(3), p. 272-278 (2013). 26. S.I. Vlaskina, G.N. Mishinova, V.I. Vlaskin, V.E. Rodionov, G.S. Svechnikov. Nanostructures in lightly doped silicon carbide crystals with polytypic defects. Semiconductor Physics, Quantum Electronics and Optoelectronics, 17(2), p. 155-159 (2014). https://doi.org/10.15407/spqeo17.02.155 27. S.I. Vlaskina, G.N. Mishinova, V.E. Rodionov, G.S. Svechnikov, The peculiarity of phase transformations of SiC crystals and thin films with in-grown original defects. Semiconductor Physics, Quantum Electronics and Optoelectronics, 17(4), p. 380-383 (2014). https://doi.org/10.15407/spqeo17.04.380 28. S.W. Lee, S.I. Vlaskina, V.I. Vlaskin et al., Silicon Carbide defects and luminescence centers in current heated 6H-SiC. Semiconductor Physics, Quantum Electronics and Optoelectronics, 13(1), p. 24-29 (2010). |