Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N4. P. 352-357.
DOI: https://doi.org/10.15407/spqeo19.04.352

References

1.    L. Bonneviot, F. Béland, C. Danumah, Mesoporous molecular sieves, in: Studies in Surface Science and Catalysis, 117, p. 614 (1998).
 
2. L. Huang, S. Kawi, K. Hidajat, S.C. Ng, Preparation of M41S family mesoporous silica thin films on porous oxides . Microporous and Mesoporous Materials, 82 (1-2), p. 87-97 (2005).
https://doi.org/10.1016/j.micromeso.2005.02.018
 
3. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures . J. Am. Chem. Soc. 120, p. 6024-6036 (1998).
https://doi.org/10.1021/ja974025i
 
4. H. Sun, Q. Tang, Y. Du, X. Liu, Y. Chen, Y. Yang, Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application . J. Colloid Interface Sci. 333, p. 317-323 (2009).
https://doi.org/10.1016/j.jcis.2009.01.071
 
5. K. Cassiers, T. Linssen, M. Mathieu et al., A detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas . Chem. Mat. 14, p. 2317-2324 (2002).
https://doi.org/10.1021/cm0112892
 
6. H. Sun, Q. Tang, Yu Du, X. Liu, Yu. Chen, Ya. Yang, Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application . J. Colloid and Interface Sci. 333, p. 317-323 (2009).
https://doi.org/10.1016/j.jcis.2009.01.071
 
7. D. Carta, M.F. Casula, S. Bullita, A. Falqui, A. Corrias, Iron–cobalt nanocrystalline alloy supported on a cubic mesostructured silica matrix: FeCo/SBA-16 porous nanocomposites . J. Nanopart. Res. 13, p. 3489-3501 (2011).
https://doi.org/10.1007/s11051-011-0270-x
 
8. G. Mayer, M. Fonin, U. Rudiger, R. Schneider, D. Gerthsen, N. Janben, R. Bratschitsch, The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering . Nanotechnology, 20, 075601 (2009).
https://doi.org/10.1088/0957-4484/20/7/075601
 
9. Jamal El Haskouri, Lobna Dallali, Lorenzo Fernandez, Nuria Garro et al., ZnO nanoparticles embedded in UVM-7-like mesoporous silica materials: Synthesis and characterization . Physica E, 42, p. 25-31 (2009).
https://doi.org/10.1016/j.physe.2009.08.011
 
10. C. Bouvy, W. Marine, B.-L. Su, ZnO/mesoporous silica nanocomposites prepared by the reverse micelle and the colloidal methods: Photo-luminescent properties and quantum size effect . Chem. Phys.Lett. 438(1-3), p. 67-71 (2007).
https://doi.org/10.1016/j.cplett.2007.02.061
 
11.    P.B. Lihitkar, S. Violet, M. Shirolkar et al., Confinement of zinc oxide nanoparticles in ordered mesoporous silica MCM-41 . Mater. Chem. and Phys. 133, p. 850-856 (2012).
https://doi.org/10.1016/j.matchemphys.2012.01.106
 
12.    K. Sowri Babu, A. Rama Chandra Reddy, Ch. Sujatha, K. Venugopal Reddy, N. Venkatathri, Structural and optical properties of ZnO nanoclusters supported on mesoporous silica . Optoelectron. and Adv. Mater. – Rapid Communs. 5(9), p. 943-947 (2011).
 
13.    Hong Cai, Honglie Shen, Linfeng Lu, Haibin Huang, Zhengxia Tang, Yugang Yin, Jiancang Shen, Properties of the ZnO/PS nanocomposites obtained by sol-gel method . Optoelectron. and Adv. Mater. – Rapid Communs. 4(5), p. 650-653 (2010).
 
14.    Vijay K. Tomer, Surender Duhan, Ashok K. Sharma, Ritu Malik, S.P. Nehrac, Sunita Devi, One pot synthesis of mesoporous ZnO – SiO2 nanocomposite as high performance humidity sensor . Colloids and Surfaces A: Physicochem. Eng. Aspects, 483, p. 121-128 (2015).
https://doi.org/10.1016/j.colsurfa.2015.07.046
 
15.    Supranee Lao-ubol, Rungsinee Khunlad, Siriporn Larpkiattaworn, Shih-Yuan Chen, Preparation, characterization, and catalytic performance of ZnO-SBA-15 catalysts . Key Eng. Mater. 690, p. 212-217 (2016).
https://doi.org/10.4028/www.scientific.net/KEM.690.212
 
16.    N. Izyumskaya, V. Avrutin, Ü. Özgür, Y. I. Alivov, H. Morkoc, Preparation and properties of ZnO and devices . Phis. Status Solidi (b), 244 (5), p. 1439-1450 (2007).
https://doi.org/10.1002/pssb.200675101
 
17.    V. Aroutiounian, V. Arakelyan, V. Galstyan, K. Martirosyan, P. Soukiassian, Hydrogen sensor made of porous silicon and covered by TiO or ZnO Al thin film . Sens J. IEEE, 9(1), p. 9-12 (2009).
https://doi.org/10.1109/JSEN.2008.2008406
 
18.    Qifeng Zhang, Christopher S. Dandeneau, Xiaoyuan Zhou, Guozhong Cao, ZnO nanostructures for dye-sensitized solar cells . Adv. Mater. 21, p. 4087-4108 (2009).
https://doi.org/10.1002/adma.200803827
 
19.    L. Martínez, O. Ocampo, Yo. Kumar, V. Agarwal, ZnO-porous silicon nanocomposite for possible memristive device fabrication . Nanoscale Res. Lett. 9, p.437-443 (2014).
https://doi.org/10.1186/1556-276X-9-437
 
20.    A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: a review . Materials, 7, p. 2833-2881 (2014).
https://doi.org/10.3390/ma7042833
 
21.    A.E. Raevskaya, Ya.V. Panasiuk, O.L. Stroyuk, et al., Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores . RSC Adv. 4, p. 63393-63401 (2014).
https://doi.org/10.1039/C4RA07959K
 
22. F. Kleitz, D.N. Liu, G.M. Anilkumar, I.S. Park et al., Large cage face-centered-cubic Fm3m mesoporous silica: Synthesis and structure . J. Phys. Chem. B, 107(51), p. 14296-14300 (2003).
https://doi.org/10.1021/jp036136b
 
23. D.Y. Zhao, Q.H. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures . J. Am. Chem. Soc. 120, p. 6024-6036 (1998).
https://doi.org/10.1021/ja974025i
 
24.    W.J.J. Stevens, M. Mertens, S. Mullens et al., Formation mechanism of SBA-16 spheres and control of their dimensions . Microporous and Mesoporous Materials, 93, p. 119-124 (2006).
https://doi.org/10.1016/j.micromeso.2006.02.015
 
25. X.Y. Hao, Y.Q. Zhang, J.W. Wang et al., A novel approach to prepare MCM-41 supported CuO catalyst with high metal loading and dispersion . Microporous and Mesoporous Materials, 88, p. 38-47 (2006).
https://doi.org/10.1016/j.micromeso.2005.08.019
 
26. C.M. Yang, P.H. Liu, Y.F. Ho, C.Y. Chiu, K.J. Chao, Highly dispersed metal nanoparticles in functionalized SBA-15 . Chem. Mater. 15(1), p. 275-280 (2003).
https://doi.org/10.1021/cm020822q
 
27. S. Brunauer, L.S. Deming, W.S. Deming, E. Teller, On a theory of the van der Waals adsorption of gases . J. Am. Phys. Soc. 62, p. 1723-1732 (1940).
https://doi.org/10.1021/ja01864a025
 
28. Hui Sun, Qinghu Tang, Yu Du, Xianbin Liu et al., Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application . J. Colloid and Interface Sci. 333, p. 317-323 (2009).
https://doi.org/10.1016/j.jcis.2009.01.071
 
29.    Qi Jiang, Zheng Ying Wu, Yi Meng Wang et al., Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template . J. Mater. Chem. 16, p. 1536-1542 (2006).
https://doi.org/10.1039/b516061h
 
30.    H.G. Chen, J.L. Shi, H.R. Chen, J.N. Yan, et al., The preparation and photoluminescence properties of ZnO-MCM-41 . Opt. Mater. 25, p. 79-84 (2004).
https://doi.org/10.1016/S0925-3467(03)00229-5
 
31.    Fang Na Gu, Ming Bo Yue, Zheng Ying Wu et al., Enhanced blue emission from ZnS-ZnO composites confined in SBA-15 . J. Lumin. 128, p. 1148-1154 (2008).
https://doi.org/10.1016/j.jlumin.2007.11.083