Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 385-395 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.385


References

1.    Canham T.I. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990. 57. P. 1046.
https://doi.org/10.1063/1.103561
 
2.    Mak K.F., Lee C., Hone J., Shan J., and Heinz T.F. Atomically thin MoS2: a new direct gap semiconductor. Phys. Rev. Lett. 2010. 105. P. 136805.
https://doi.org/10.1103/PhysRevLett.105.136805
 
3.    G. Juska, A. Medvid', V. Gulbinas. Initial Charge Carrier Dynamics in Porous Silicon Revealed by Time‐Resolved Fluorescence and Transient Reflectivity. Physica Status Solidi (A) Applications and Materials 207(1):188 - 193 (2009).
 
4.    Cullis A.G., Canham L.T., and Calcott P.D.J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997. 82. P. 909.
https://doi.org/10.1063/1.366536
 
5.    Bisi O., Ossicini S., and Pavesi L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 2000. 38. P. 1.
https://doi.org/10.1016/S0167-5729(99)00012-6
 
6.    Cullis A.G. and Canham L.T. Visible light emission due to quantum size effect in highly porous crystalline silicon. Nature Lett. 1991. 353. P. 335.
https://doi.org/10.1038/353335a0
 
7.    Ledoux G., Guillois O., Porterat D., Reynaud C., Huisken F., Kohn B., and Paillard V. Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B. 2000. 62. P. 15942.
https://doi.org/10.1103/PhysRevB.62.15942
 
8.    Smith R.L. and Collins S.D. Porous silicon for-mation mechanism. J. Appl. Phys. 1992. 71. P. R1.
https://doi.org/10.1063/1.350839
 
9.    Kleimann P., Linnros J., and Juhasz R. Formation of three-dimensional microstructures by electro-chemical etching of silicon. Appl. Phys. Lett. 2001. 79. P. 1727.
https://doi.org/10.1063/1.1401792
 
10.    Searson P.C. and Zhang X.G. The anodic dissolution of silicon in HF solutions. J. Electrochem. Soc. 1990. 137. P. 2539.
https://doi.org/10.1149/1.2086984
 
11.    Memming R. and Schwandt G. Anodic dissolution of silicon in hydrofluoric acid solutions. Surf. Sci. 1966. 4. P. 109.
https://doi.org/10.1016/0039-6028(66)90071-9
 
12.    Propst E.K. and Kohl P.A. The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. J. Electrochem. Soc. 1994. 141. P. 1006.
https://doi.org/10.1149/1.2054832
 
13.    Foll H., Carstensen J.U., and Frey S. Porous and nanoporous semiconductor and emerging applications. J. Nanomater. 2006. 2006. P. 1.
 
14.    Manilov A.I., Alekseev S.A., Scryshevsky V.A., Litvineneko S.V., Kuznetsov G.V., and Lysenko V. J. Alloys and Compounds. 2010. 492. P. 466–472.
https://doi.org/10.1016/j.jallcom.2009.11.141
 
15.    Smyntyna V.A. Semiconductor Materials for Gas Sensors, Chap. 3. Ed. V.A. Smyntyna. P. 35–46. New York: Nova Science Publishers, 2013.
 
16.    Litovchenko V.G., Gorbanyuk T.I., Solntsev V.S., and Evtukh A.A. Mechanism of hydrogen, oxygen and humidity sensing by Cu/Pd-porous silicon–silicon structures. Appl. Surf. Sci. 2004. 234. P. 262.
https://doi.org/10.1016/j.apsusc.2004.05.146
 
17.    Gorbanyuk T.I., Evtukh A.A., Litovchenko V.G., Solntsev V.S., and Pakhlov E.M. Porous silicon microstructure and composition characterization depending on the formation conditions. Thin Solid Films. 2006. 495. P. 134.
https://doi.org/10.1016/j.tsf.2005.08.188
 
18.    Okayamaa H., Fukamia K., Plugarub R., Sakkaa T., and Ogataa Y.H. Ordering and disordering of macropores formed in rrepatterned p-type silicon. J. Electrochem. Soc. 2010. 157. P. D54.
https://doi.org/10.1149/1.3256126
 
19.    Gorbanyuk T.I., Evtukh A.A., Litovchenko V.G., Solntsev V.S. Modified MIS-structure based on nanoporous silicon with enhanced sensitivity to the hydrogen containing gases. phys. status solidi (c). 2008. 5. P. 3655.
 
20.    Gorbanyuk T.I., Evtukh A.A., Litovchenko V.G., Solntsev V.S. Nanoporous silicon doped by Cu for gas-sensing applications // Physica E 38, p. 211 (2007).
https://doi.org/10.1016/j.physe.2006.12.038
 
21.    Litovchenko V.G., Gorbanyuk T.I., Ptushinskii Yu.G., and Kanash O.V. Gas sensing properties of
 
22.    Litovchenko V.G., Gorbanyuk T.I., Solntsev V.S. New adsorption active nanoclusters for ecological monitoring, in: Nanodevices and Nanomaterials for Ecological Security, Ed. A. Kiv. Springer, 2013, P. 297–306.
 
23.    Litovchenko V.G., Gorbanyuk T.I. Mechanism of influence of aminoacid adsorption on photoluminescence of nanoporous silicon. Nanotechnology in the Security Systems, NATO Science for Peace and Security Series C: Environmental Security. Springer Science, 2015. P. 257–266.
 
24.    Litovchenko V.G., Gorbanyuk T.I., Solntsev V.S. Mechanism of adsorption-catalytic activity at the nanostructured surface of silicon doped with clusters of transition metals and their oxides. Ukr. J. Phys. 2017. 62. P. 605.
https://doi.org/10.15407/ujpe62.07.0605
 
25.    Efremov A.A., Litovchenko V.G., and Sarikov A.V. The formation of the low-dimensional porous silicon–based structures with extremely high exciton binding energy. Mater. Sci. Eng. C. 2003. 23. P. 165–170.
https://doi.org/10.1016/S0928-4931(02)00263-1
 
26.    Evtukh A.A., Litovchenko V.G., Litvin Yu. M., Efremov A. A., Rassamakin Yu.V., Sarikov A.V., and Fedin D.V. Porous silicon as a material for enhancement of electron field emission. Phys. Low–Dim. Struct. 2001. N 1/2. P. 65–72.
 
27.    Efremov A.A. and Sarikov A.V. Computer modelling of the porous silicon formation process. Proc. XVI Open scientific and technical conference of young scientists and specialists of the Karpenko Physico–Mechanical Institute of NAS of Ukraine (YSC–2001), Lviv, May 18–22, 2001, P. 47–50.
 
28.    Labunov V.A., Bondarenko V.P., and Borisenko V.E. Porous silicon in semiconductor electronics. Zarubezhnaya Elektronnaya Tekhnika. 1978. N 8. P. 3–48 (in Russian).