Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4), P. 465-469 (2017).
DOI: https://doi.org/10.15407/spqeo20.04.465


References

1. Fedorenko Y.G., Sverdlova A.M., Malinin A. Study of the dynamical characteristics of an insulator-semiconductor interface. Semiconductors. 1998. 32, Issue 11. P. 1190–1195.
https://doi.org/10.1134/1.1187590
 
2. Korolevich L.N., Borisov A.V., Prokopenko A.S., Minyailo A.N. CV-investigation of the electrophysical parameters of thin CeO2 films in the Al-CeO2-n-Si-Al MIS structure. Elektronika I Sviaz'. Tematich. vypusk "Problemy elektroniki". 2008. Part 1. P. 35-37 (in Russian).
 
3. Rozhkov V.A., Trusova A.Yu., Berezhno I.G. Energy barriers and trapping centers in silicon metal-insulator-semiconductor structures with samarium and ytterbium oxide insulators. Techn. Phys. Lett. 1998. 24, Issue 3. P. 217–219.
https://doi.org/10.1134/1.1262059
 
4. Rodionov M.A., Rozhkov V.A. Antireflection properties of erbium oxide films. Techn. Phys. Lett. 2005. 31, Issue 1. P. 77–78.
 
5. Rodionov M.A., Rozhkov V.A. Silicon passivated by insulating erbium oxide films. Techn. Phys. Lett. 2005. 31, Issue 2. P. 115–116.
https://doi.org/10.1134/1.1877619
 
6. Anoshin Yu.A., Petrov A.I., Rozhkov V.A., Romanenko N.N., Shalimova M.B. Rare-earth oxide antireflection coatings for silicon photoelectric devices. Pis'ma v ZhTF. 1992. 18, No. 10. P. 54-58 (in Russian).
 
8. Hubbard K.J., Schlom D.G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 1996. 11, No. 11. P. 2757–2776.
https://doi.org/10.1557/JMR.1996.0350
 
9. Al-Kuhaili M.F., Durrani S.M.A. Optical properties of erbium oxide thin films deposited by electron beam evaporation. Thin Solid Films. 2007. 515, No. 5. P. 2885–2890.
https://doi.org/10.1016/j.tsf.2006.08.048
 
10.    Mikhelashvili V., Eisenstein G., Edelman F., Brener R., Zakharov N., Werner P. Structural and electrical properties of electron beam gun evaporated Er2O3 insulator thin films. J. Appl. Phys. 2004. 95, No. 2. P. 613–620.
https://doi.org/10.1063/1.1633342
 
11. Gritsenko D.V., Shaimeev S.S., Atuchin V.V., Grigor'eva T.I., Pokrovskii L.D., Pchelyakov O.P., Gritsenko V.A., Aseev A.L., Lifshits V.G. Two-band conduction in TiO2. Phys. Solid State. 2006. 48, Issue 2. P. 224–228.
https://doi.org/10.1134/S1063783406020053
 
12. Kingon A.I., Maria J.-P., Streiffor S.K. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature. 2000. 406. P. 1032–1038.
https://doi.org/10.1038/35023243
 
13. Wilk G.D., Wallace R.M., Anthony J.M. High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001. 89, No. 10. P. 5243–5275.
https://doi.org/10.1063/1.1361065
 
14. Sapaev B., Saidov A.S., Sapaev I.B., Bacherikov Yu.Yu., Konakova R.V., Okhrimenko O.B., Dmit-ruk I.N., Galak N.P. Spectroscopy of solid solutions (Si2)1-X(ZnS)X. SPQEO. 2005. 6, N 3. P. 16–18.
 
15. Alfian Noviyanto, Dang-Hyok Yoon. Rare-earth oxide additives for the sintering of silicon carbide. Dia¬mond and Related Material. 2013. 38. P. 124–130.
 
16. Cho Y.S., Heo J.S., Kim J.C., Moon S.H. Monitoring of an interlayer between Si(100) and a TiO2 layer formed during cyclic CVD. Chemical Vapor Deposition. 2006. 12, No. 11. P. 659–664.
https://doi.org/10.1002/cvde.200506455
 
17. Bacherikov Yu.Yu., Dmitruk N.L., Konakova R.V. et al. Effect of rapid thermal annealing on the properties of thin dielectric films of gadolinium, titanium, and erbium oxides on the silicon carbide surface. Techn. Phys. 2007. 52, No. 2. P. 253–257.
https://doi.org/10.1134/S106378420702017X
 
18. Berezovska N.I., Bacherikov Yu.Yu., Konakova R.V., Okhrimenko O.B., Lytvyn O.S., Linets L.G., Svetlichnyi A.M. Characterization of porous silicon carbide according to absorption and photoluminescence spectra. Semiconductors. 2014. 48, No. 8. P. 1028–1030.
https://doi.org/10.1134/S1063782614080041
 
19. Bacherikov Yu.Yu., Konakova R.V., Okhrimenko O.B. et al. Effect of por-SiC buffer layer on the parameters of thin Er2O3 layers on silicon carbide substrates. Mater. Sci. Eng. 2015. 81. P. 012019.
https://doi.org/10.1088/1757-899X/81/1/012019
 
20. Gorban' I.S., Krokhmal'A.P. The impurity optical ab¬sorption and conduction band structure in 6H-SiC. Semiconductors. 2001. 35, Issue 11. P. 1242–1248.
https://doi.org/10.1134/1.1418064
 
21. Safaraliev G.K., Émirov Yu.N., Kurbanov M.K., Bilalov B.A. Spectral shift of photoluminescence bands of the (SiC)1−x(AlN)x epitaxial films due to laser annealing. Semiconductors. 2000. 34, Issue 8. P. 891–893.
https://doi.org/10.1134/1.1188095
 
22. Patrick Lyle, Choyke W.J. Photoluminescence of radiation defects in ion-implanted 6H-SiC. Phys. Rev. B. 1972. 5, No. 8. P. 3253–3259.
https://doi.org/10.1103/PhysRevB.5.3253
 
23. Choyke W.J., Patrick Lyle. Photoluminescence of radiation defects in cubic SiC: Localized modes and Jahn-Teller effect. Phys. Rev. B. 1971. 4, No. 6. P. 1843–1847.
https://doi.org/10.1103/PhysRevB.4.1843
 
24. Gorban' I.S., Rud'ko S.N. Optical properties of silicon carbide crystals. Fizika Tverd. Tela. 1963. 5, Issue 5. P. 1368–1372 (in Russian).
 
25. Ki-Hwan Lee, Seung-Koo Lee, Ki-Seok Jeon. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing. Appl. Surf. Sci. 2009. 255, No. 8. P. 4414–4420.
https://doi.org/10.1016/j.apsusc.2008.11.047
 
26. Rittenhouse T.L., Bohn P.W., Hossain T.K., Adesida Ilesanmi, Lindesay J., Marcus A. Surface-state origin for the blueshifted emission in anodically etched porous silicon carbide. J. Appl. Phys. 2004. 95, No. 2. P.490–496.
https://doi.org/10.1063/1.1634369
 
27. Higashi E., Tajima M., Hoshino N., Hayashi T., Kinoshita H., Shiomi H., Matsumoto S. Defect observation in SiC wafers by room-temperature photoluminescence mapping. Mater. Sci. in Semi-conduct. Process. 2006. 9, Issues 1-3. P. 53–57.