Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2017, 20 (4),
P. 470-474 (2017). References 1. Rogalski A. Infrared Photon Detectors. SPIE Optical Engineering Press, N.Y., 1995.2. Dewald J.F. The kinetics and mechanism of formation of anode films on single crystals InSb. J. Electrochem. Soc. 1957. 104, No. 4. P. 244–251. https://doi.org/10.1149/1.2428546 3. Physics and Chemistry of III-V Compound Semiconductor Interfaces, C.W. Wilmsen, Ed. New-York: Plenum, 1985. 4. Chang L.L. and Howard W.E. Surface inversion and accumulation of anodized InSb. Appl. Phys. Lett. 1965. 7, No. 8. P. 210–212. https://doi.org/10.1063/1.1754382 5. Hung R.Y. and Yon E.T. Surface study of anodized indium antimonide. J. Appl. Phys. 1970. 41, No. 5. P. 2185–2189. https://doi.org/10.1063/1.1659187 6. Langan I.D., Vismanasan C.R. Characterization of improved InSb interface. J. Vac. Sci. Technol. 1979. 16, No. 5. P. 1474–1477. https://doi.org/10.1116/1.570225 7. Kai-Feng Huang, Shie J.S., Luo J.J., and Chen J.S. Electrical properties of InSb metal–insulator–semiconductor diodes prepared by photochemical vapour deposition. Thin Solid Films. 1987. 151. P. 145–152. https://doi.org/10.1016/0040-6090(87)90228-8 8. Bloom I. and Nemirovsky Y. Surface passivation of back-side illuminated indium antimonide focal plane array. IEEE Trans. Electron Dev. 1993. 40, No. 2. P. 309–314. https://doi.org/10.1109/16.182506 9. Barth W. and Lile D. Role of native oxide on indium antimonide surface properties. Thin Solid Films. 1993. 229. P. 54–57. https://doi.org/10.1016/0040-6090(93)90409-I 10. Sun Weiguo. Interface of anodic sulfide on n-type InSb. Appl. Phys. A. 1991. 52, No. 1. P. 64–67. 11. Sze S.M. Physics of Ssemiconductors Devices. Second edition. Wiley, 1981. 12. Toshihiko Sakurai, Toshimaza Suzuki and Yoshio Noguchi. Formation and proprties of anodic oxide films on indium antimonide. Jpn. J. Appl. Phys. 1968. 7, No. 12. P. 1491–1496. https://doi.org/10.1143/JJAP.7.1491 13. Wilmsen C.W., Vasbinder G.C. and Chang Y.K. Electrical conduction through thermal and anodic oxides of InSb. J. Vac. Sci. Technol. 1975. 12, No. 1. P. 56–59. https://doi.org/10.1116/1.568612 14. Wilmsen C.W. Correlation between the composition profile and electrical conductivity of the thermal and anodic oxides. J. Vac. Sci. Technol. 1976. 13, No. 1. P. 64–67. https://doi.org/10.1116/1.568958 15. Sazonov S.G., Yuryev Yu.N. Conductivity of nature oxides on the surface of AIIIBV compounds. Optoelectron., Instrument. and Data Process. 1988. No. 3. P. 40–48. 16. Santinacci L., Sproule G.I., Moisa S. et al. Growth and characterization of thin anodic oxide on n-InSb(100) formed in aqueous solutions. Corrosion Sci. 2004. 46. P. 2067–2079. https://doi.org/10.1016/j.corsci.2003.11.003 17. Tang X., van Welzenis R.G., van Setten F.M. and Bosch A.J. Oxidation of the InSb surface at room temperature. Semicond. Sci. Technol. 1986. 1, No. 6. P. 355–365. https://doi.org/10.1088/0268-1242/1/6/004 18. Scherg-Kurmes H., Seeger S., Korner S. et al. Optimization of the post-deposition annealing process of high-mobility In2O3:H for photovoltaic ap¬plications. Thin Solid Films. 2016. 599. P. 78–83. https://doi.org/10.1016/j.tsf.2015.12.054 19. de Wit I.H.W., van Unen G. and Lahey M. Electron concentration and mobility in In2O3. J. Phys. Chem. Solids. 1977. 38. P. 819–824. https://doi.org/10.1016/0022-3697(77)90117-2 20. Preissler N., Bierwagen O., Ramu A.T., Speck J.S. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Phys. Rev. B. 2013. 88. P. 085305. https://doi.org/10.1103/PhysRevB.88.085305 21. Zhang K.H.L., Egdell R.G., Offi F. et al. Microscopic origin of electron accumulation in In2O3. Phys. Rev. Lett. 2013. 110. P. 056803. https://doi.org/10.1103/PhysRevLett.110.056803 22. Schroeder H. Poole–Frenkel effect as dominating current mechanism in thin oxide films – An illusion? J. Appl. Phys. 2015. 117. P. 215103. https://doi.org/10.1063/1.4921949 23. Vollmann W. Poole–Frenkel conduction in insulators of large impurity densities. phys. status solidi (a). 1974. 22. P. 195–203. 24. Yoram Shapira, Bregman J. and Calahorra Z. Origin and effects of interface traps in anodic native oxides on InSb. Appl. Phys. Lett. 1985. 47, No. 5. P. 495–497. https://doi.org/10.1063/1.96104 25. Adar R., Bloom I., Nemirovsky Y. Slow trapping measurements in InSb-anodic oxide interface. Solid-State Electron. 1989. 32, No. 2. P. 111–118. https://doi.org/10.1016/0038-1101(89)90176-7 26. Walsh A., DaSilva J.L.F., Su-Huai Wei et al. Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy. Phys. Rev. Lett. 2008. 100. P. 167402. https://doi.org/10.1103/PhysRevLett.100.167402 27. 27. Tigau N., Ciupina V., Prodan G., Rusu G.I., Gheorghies C., Vasile E. The influence of heat treatment on the electrical conductivity of antimony trioxide thin films. J. Optoelectron. Adv. Mater. 2003. 5. P. 907–912. 28. 28. Tigau N., Ciupina V., Prodan G. Structural, optical and electrical properties of Sb2O3 thin films with different thickness. J. Optoelectron. Adv. Mater. 2006. 8, No. 1. P. 37–42. |