Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (4), P. 412-416 (2018).
DOI: https://doi.org/10.15407/spqeo21.04.412


References

1. Khan M.S., Reza A. Optical and electrical properties of optimized thin gold films as top layer of MIS solar cells. Appl. Phys. A. 1992. 54, No 2. P. 204–207. DOI: 10. 1007/BF00323913.

2. Sung W. Kim, Lin Pang, Brandon Hong, Joanna Ptasinski, and Yeshaiahu Fainman. Experimental demonstration of quenched transmission effect of an ultrathin metallic grating. Opt. Lett. 2016. 41. P. 1522–1525.
https://doi.org/10.1364/OL.41.001522

3. Harsha Reddy, Urcan Guler, Kildishev A.V., Boltasseva A., and Shalaev V.M. Temperature-dependent optical properties of gold thin films. Opt. Mater. Exp. 2016. 6. P. 2776–2802.
https://doi.org/10.1364/OME.6.002776

4. Kostyukevych S.A., Kostyukevych K.V., Khristosenko R.V. et al. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Opt. Eng. 2017. 56, No 12. P. 121907-1–121907-8.
https://doi.org/10.1117/1.OE.56.12.121907

5. James D., Scott S.M., Ali Z., O'Hare W.T. Chemical sensors for electronic nose systems. Microchim. Acta. 2005. 149. P. 1–17. http://dx.doi.org/10.1007/s00604-004-0291-6
https://doi.org/10.1007/s00604-004-0291-6

6. Juskova P. and Foret F. Application of thin metal film elements in bioanalysis. Journal of Separation Science. 2011. 34, No 20. P. 2779–2789.
https://doi.org/10.1002/jssc.201100288

7. Homola J., Yee S.S., and Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B: Chem. 1999. 54, No 1. P. 3–15.
https://doi.org/10.1016/S0925-4005(98)00321-9

8. Anker J.N., Hall W.P., Lyandres O., Shah N.C., Zhao J., and Van Duyne R.P. Biosensing with plasmonic nanosensors. Nature Materials. 2008. 7, No 6. P. 442–453.
https://doi.org/10.1038/nmat2162

9. Poperenko L.V. and Staschuk V.S. Fundamentals of Physics of Optical Materials. Kyiv, Ukraine: VPC "Kyiv University", 2011. P 256–266 (in Ukrainian).

10. Y.M. Zhang, R.H. Terrill, P.W. Bohn. Chemisorption and chemical reaction effects on the resistivity of ultrathin gold films at the liquid-solid interface. Anal. Chem. 1999. 71, No 1. P. 119–125. DOI: 10.1021/ac980571y.
https://doi.org/10.1021/ac980571y

11. West P.R., Ishii S., Naik G.V., Emani N.K., Shalaev V.M., and Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Reviews. 2010. 4, No 6. P. 795–808.
https://doi.org/10.1002/lpor.200900055

12. Kravets V.G., Petford-Long A.K., Kravetz A.F. Optical and magneto-optical properties of (CoFe)x(HfO2)1-x magnetic granular films. J. Appl. Phys. 2000. 87, No 4. P. 1762–1768.
https://doi.org/10.1063/1.372089

13. Rogovets A.V., Karlenko B.V., Makarenko A.V., Yampolskiy A.L. Measurements automation: the algorithm for visual scale recognition realized in LabView. Bulletin of Taras Shevchenko National University of Kyiv. Series Physics & Mathematics. 2017. No 4. P. 193–196.

14. Kravets V.G., Kuryoz P.Yu., Poperenko L.V. High reflection efficiency for surface plasmon resonance in glass/Cr/Au, glass/Cr/Au/HfO2 films. 13-th Intern. Young Scientists Conf. Optics and High Technology Material Science – SPO-2012. Ukraine, Kyiv, October 25–28, 2012. P. 136. Kyiv: VPC "Kyiv University".

15. Kuryoz P.Yu., Kravets V.G., Poperenko L.V. Spectral ellipsometric observation of surface plasmon resonance in metal-dielectric nanocomposites. 14-th Intern. Young Scientists Conf. Optics and High Technology Material Science – SPO-2013. Ukraine, Kyiv, October 24–27, 2013. P. 92. Kyiv: VPC "Kyiv University".

16. Kuryoz P.Yu., Poperenko L.V., and Kravets V.G. Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films. phys. status solidi (a). 2013. 210, No 11. P. 2445–2455.