Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (4) P. 381-386 (2019).
DOI:
https://doi.org/10.15407/spqeo22.04.381
References
1. Claeys C., and Simoen E. Germanium-based Technologies: From Materials to Devices. Berlin, Elsevier, 2007. | | 2. Koester S.J., Schaub J.D., Dehlinger G., and Chuieee J.O. Germanium-on-SOI infrared detectors for integrated photonic applications. IEEE J. Sel. Top. Quantum Electron. 2006. 12, No 6. P. 1489-1502. https://doi.org/10.1109/JSTQE.2006.883160. https://doi.org/10.1109/JSTQE.2006.883160 | | 3. Olson J., Kurtz S., Kibbler A. and Faine A. A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell. Appl. Phys. Lett. 1990. 56, No 7. P. 623-625. https://doi.org/10.1063/1.102717. https://doi.org/10.1063/1.102717 | | 4. King R.R., Law D.C., Edmondson K.M. et al. 40% efficient metamorphic GaInP∕GaInAs∕Ge multi-junction solar cells. Appl. Phys. Lett. 2007. 90, No 18. P. 183516. https://doi.org/10.1063/1.2734507. https://doi.org/10.1063/1.2734507 | | 5. Raoux S., Cheng H., Jordan-Sweet Jean L., Munoz B., and Hitzbleck M. Influence of interfaces and doping on the crystallization temperature of Ge-Sb. Appl. Phys. Lett. 2009. 94, No 18. P. 183114. https://doi.org/10.1063/1.3133344. https://doi.org/10.1063/1.3133344 | | 6. Pat. 81729 Ukraine, CI C30B 15/00, C30B 29/08, C30B 33/02. Optical germanium. H.S. Pekar, O.F. Synhayivs'kyy - 29.11.2006; publ. 25.01.2008, Bul. №19. | | 7. Kaplunov I.A., Kolesnikov A.I., and Shaiovich S.L. Methods for measuring light scattering in germa-nium and paratellurite crystals. Crystallography Reports. 2005. 50, No 1. P. S46-S52. https://doi.org/10.1134/1.2133971. https://doi.org/10.1134/1.2133971 | | 8. Astaf'ev N.I., Nesmelova I.M., Nesmelov E.A. Features of semiconductor materials as infrared optical media. J. Opt. Technol. 2008. 75, No 9. P. 608-610. https://doi.org/10.1364/JOT.75.000608. https://doi.org/10.1364/JOT.75.000608 | | 9. Ludwig W., Schmidt S., Lauridsen E., and Poulsen H. X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J. Appl. Crystallogr. 2008. 41, No 2. P. 302-309. https://doi.org/10.1107/S0021889808001684. https://doi.org/10.1107/S0021889808001684 | | 10. Bowen D. and Tanner B. High Resolution X-Ray Diffractometry and Topography. CRC Press, 1998. | | 11. Authier A. Dynamical Theory of X-Ray Diffraction. New York, Oxford University Press, 2001. https://doi.org/10.1093/acprof:oso/9780198528920.001.0001. https://doi.org/10.1093/acprof:oso/9780198528920.001.0001 | | 12. Holy V., Pietsch U. and Baumbach T. High-Resolution X-ray Scattering from Thin Films and Multilayers. Heilderberg, Springer, 1999. https://doi.org/10.1007/BFb0109385. https://doi.org/10.1007/BFb0109385 | | 13. Fodchuk I.M., Balovsyak S.V., Borcha M.D., Garabazhiv Ya.D., and Tkach V.N. Determination of structural homogeneity of synthetic diamonds from analysis of Kikuchi lines intensity distribution. SPQEO. 2010. 13, No 3. P. 262-267. | | 14. Wilkinson A. and Britton B. Strains, planes, and EBSD in materials science. Materials Today. 2012. 15, No 9. P. 366-376. https://doi.org/10.1016/S1369-7021(12)70163-3. https://doi.org/10.1016/S1369-7021(12)70163-3 | | 15. Stoll A. and Wilkinson A.J. Simulation of deformation twins and their interactions with cracks. Comput. Mater. Sci. 2014. 89. P. 224-232. https://doi.org/10.1016/j.commatsci.2014.03.041. https://doi.org/10.1016/j.commatsci.2014.03.041 | | 16. Dingley D.J., Wilkinson A.J., Meaden G., and Karamched P.S. Elastic strain tensor measurement using electron backscatter diffraction in the SEM. J. Electron Microscopy. 2010. 59, No S1. P. S155-S163. https://doi.org/10.1093/jmicro/dfq043. https://doi.org/10.1093/jmicro/dfq043 | | 17. Borcha M., Zvyagintseva A., Tkach V. et al. Local deformations in the vicinity of welded-joint crack of nickel alloy determined with use of Fourier transform of the Kikuchi patterns. Metallofizika Noveishie Tekhnol. 2013. 35, No 10. P. 1359-1370. | | 18. Borcha M., Balovsyak S., Fodchuk I., Khomenko V., and Tkach V. Distribution of local deformations in diamond crystals according to the analysis of Kikuchi lines profile intensities. J. Superhard Materials. 2013. 35, No 4. P. 220-226. https://doi.org/10.3103/S1063457613040035. https://doi.org/10.3103/S1063457613040035 | | 19. Fodchuk I., Balovsyak S., Borcha M., Garabazhiv Ya., and Tkach V. Determination of structural inhomogeneity of synthesized diamonds by backscattering electron diffraction. phys. status solidi (a). 2011. 208, No 11. P. 2591-2596. https://doi.org/10.1002/pssa.201184266 https://doi.org/10.1002/pssa.201184266 | | 20. Fodchuk I., Solodkyi M., Borcha M., Balovsyak S., and Tkach V. Determination of local deformations and their anisotropy in polycrystalline Ge by electron backscatter diffraction data. Metallofizika Noveishie Tekhnol. 2019. 41, No 3. P. 403-415. https://doi.org/10.15407/mfint.41.03.0403. https://doi.org/10.15407/mfint.41.03.0403 | | 21. Fodchuk I., Tkach V., Ralchenko V. et al. Dis-tribution in angular mismatch between crystallites in diamond films grown in microwave plasma. Diamond Relat. Mater. 2010. 19, No 5-6. P. 409-412. https://doi.org/10.1016/j.diamond.2010.01.020. https://doi.org/10.1016/j.diamond.2010.01.020 | | 22. Hirt P. Mosaic Structure. Moscow, Mir, 1960. | | 23. Balovsyak S., Fodchuk I. Objects images alignment with the use of genetic and gradient algorithms. Computing. 2013. 12, No 2. P. 160-167. | | 24. Borcha M., Solodkyi M., Balovsyak S. et al. Determination of local strains in a neighborhood of cracks in a welded seam of Ni-Cr-Fe according to the power Fourier spectrum of Kikuchi patterns. Physics and Chemistry of Solid State. 2018. 19, No 4. P. 307-312. https://doi.org/10.15330/pcss.19.4.307-312. https://doi.org/10.15330/pcss.19.4.307-312 | | 25. Gonsales R., Woods R., and Eddins S. Digital Image Processing using MATLAB. Moscow, Tekhnosfera, 2006. | | 26. Gonsales R. and Woods R. Digital Image Processing. Moscow, Tekhnosfera, 2005. | |
|
|