Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 339-345 (2020).
References
1. Dornhaus R. and Nimitz G. Narrow-Gap Semiconductors, Eds. G. Hohler and E.A. Nickisch. Springer, Berlin, 1983.
https://doi.org/10.1007/BFb0044919
2. Faurie J.P., Reno J. and Boukerche M. II-VI semiconductor compounds: New superlattice systems for the future? J. Crystal Growth. 1985. 72, No 1-2. P. 111-116.
https://doi.org/10.1016/0022-0248(85)90127-7
3. Malyk O.P. and Syrotyuk S.V. Local electron interaction with point defects in sphalerite zinc selenide: calculation from first principles. Journal of Electronic Materials. 2018. 47, No 8. P. 4212-4218.
https://doi.org/10.1007/s11664-018-6068-1
4. Guminilovych R.R., Shapoval P.I., Yatchyshyn I.I., Il'chuk G.A. and Kusnezh V.V. Chemical surface deposition and growth rate of thin CdSe films. Russian Journal of Applied Chemistry. 2013. 86, No 5. P. 696-702.
https://doi.org/10.1134/S1070427213050157
5. Nykyruy L.I., Yavorskyi R.S., Zapukhlyak Z.R., Wisz G. and Potera P. Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties. Opt. Mater. 2019. 92. P. 319-329.
https://doi.org/10.1016/j.optmat.2019.04.029
6. Yavorskyi R., Nykyruy L., Wisz G., Potera P., Adamiak S. and Gorny Sz. Structural and optical properties of cadmium telluride obtained by physical vapor deposition technique. Applied Nanoscience (Switzerland). 2018. 9. P. 715-724.
https://doi.org/10.1007/s13204-018-0872-z
7. Syrotyuk S.V. and Malyk O.P. Effect of strong correlations on the spin-polarized electronic energy bands of the CdMnTe solid solution. J. Nano-Electron. Phys. 2019. 11, No 1. P. 01009 (6 p.).
https://doi.org/10.21272/jnep.11(1).01009
8. Malyk O. and Syrotyuk S. New scheme for calculating the kinetic coefficients in CdTe based on first-principle wave function. Computational Materials Science. 2017. 139. P. 387-394.
https://doi.org/10.1016/j.commatsci.2017.07.039
9. Asadov S.M., Mamedov A.N. and Kulieva S.A. Composition- and temperature-dependent thermo-dynamic properties of the Cd, Ge||Se, Te system, containing CdSe1-õTeõ solid solutions. Inorganic Materials. 2016. 52, No 9. P. 876-885.
https://doi.org/10.1134/S0020168516090016
10. Li C., Wang A., Wu L., He X., Zhang J., Hao X. and Feng L. Investigations of the structural, optical properties and electronic structure of CdTe1-xSex films fabricated by RF magnetron sputtering. Mater. Res. Express. 2019. 6. P. 066415.
https://doi.org/10.1088/2053-1591/ab109c
11. Malyk O.P. Prediction of the kinetic properties of sphalerite CdSexTe1-x (0.1? ? ?x ??? 0.5) solid solution: an ab initio approach. J. Electron. Mater. 2020. 49. P. 3080-3088.
https://doi.org/10.1007/s11664-020-07982-6
12. Petrus R., Ilchuk H., Kashuba A., Semkiv I. and Zmiiovska E. Optical properties of CdTe thin films obtained by the method of high-frequency magnetron sputtering. Functional Materials. 2020. 27, No 2. P. 342-347.
https://doi.org/10.15407/fm27.02.342
13. Ilchuk H.A., Petrus R.Yu., Kashuba A.I., Semkiv I.V. and Zmiiovska E.O. Optical-energy properties of the bulk and thin-film cadmium telluride (CdTe). Nanosystems, Nanomaterials, Nanotechnologies. 2018. 16, No 3. P. 519-533.
14. Il'chuk G.A., Petrus R.Yu., Kashuba A.I., Semkiv I.V. and Zmiiovs'ka E.O. Peculiarities of the optical and energy properties of thin CdSe films. Optics and Spectroscopy. 2020. 128, No 1. P. 50-57.
https://doi.org/10.1134/S0030400X20010105
15. Kale R.B. and Lokhande C.D. Band gap shift, structural characterization and phase transformation of CdSe thin films from nanocrystalline cubic to nanorod hexagonal on air annealing. Semiconductor Science and Technology. 2005. 20, No 1. P. 1.
https://doi.org/10.1088/0268-1242/20/1/001
16. Kainthla R.C., Pandya D.K. and Chopra K.L. Solution growth of CdSe and PbSe films. Journal of the Electrochemical Society. 1980. 127, No 2. P. 277.
https://doi.org/10.1149/1.2129655
17. Berger L.I. Semiconductor Materials. CRC Press, 1996.
18. Poplawsky J., Guo W., Paudel N. et al. Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 2016. 7. P. 12537.
https://doi.org/10.1038/ncomms12831
19. Xing B., Li W., Wang X. et al. Highly-fluorescent alloyed quantum dots of CdSe1-xTex synthesized in paraffin liquid: gradient structure and promising bio-application. J. Mater. Chem. 2010. 20, No 27. P. 5664-5674.
https://doi.org/10.1039/c0jm00221f
20. Lingg M., Spescha A., Haass S.G. et al. Structural and electronic properties of CdTe1-xSex films and their application in solar cells. Energy Materials. 2018. 19, No 1. P. 683-692.
https://doi.org/10.1080/14686996.2018.1497403
21. Mangalhara J.P., Thangaraj R., Agnihotri O.P. Structural, optical and photoluminescence properties of electron beam evaporated CdSe1-xTex films. Solar Energy Materials. 1989. 19, No 3-5. P. 157-165.
https://doi.org/10.1016/0165-1633(89)90002-6
22. Reshak A.H., Kityk I.V., Khenata R., Auluck S. Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe1-xTex: An ab initio study. Journal of Alloys and Compounds. 2011. 509, No 24. P. 6737-6750.
https://doi.org/10.1016/j.jallcom.2011.03.029
23. Ouendadji S., Ghemid S., Bouarissa N., Meradji H. and El Haj Hassan F. Ab initio study of structural, electronic, phase diagram, and optical properties of CdSexTe1-x semiconducting alloys. J. Mater. Sci. 2011. 46. P. 3855-3861.
https://doi.org/10.1007/s10853-011-5306-1
24. Hussein M.T. and Fayyadh H.A. Theoretical modeling of the electronic properties core and surface of CdSe1-xTex chalcogenide nanocrystals via DFT calculation. Chalcogenide Lett. 2016. 13, No 12. P. 537-545.
25. Lingg M., Spescha A., Haass S.G., Carron R., Buecheler S. and Tiwari A.N. Structural and electronic properties of CdTe1-xSex films and their application in solar cells. Science and Technology of Advanced Materials. 2018. 19, No 1. P. 683-692.
https://doi.org/10.1080/14686996.2018.1497403
26. Petrus R.Yu., Ilchuk H.A., Sklyarchuk V.M., Kashuba A.I., Semkiv I.V. and Zmiiovska E.O. Transformation of band energy structure of solid solutions CdMnTe. J. Nano-Electron. Phys. 2018. 10, No 6. P. 06042 (5 p).
https://doi.org/10.21272/jnep.10(6).06042
27. Deligoz E., Colakoglu K. and Ciftci Y. Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B: Condensed Matter. 2006. 373, No 1. P. 124-130.
https://doi.org/10.1016/j.physb.2005.11.099
28. Gibbs Z.M., Ricci F., Li G. et al. Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Comput. Mater. 2017. 3, No 8.
https://doi.org/10.1038/s41524-017-0013-3
29. Rubio-Ponce A., Olguin D. and Hernandez-Calderon I. Calculation of the effective masses of II-VI semiconductor compounds. Superficies y Vacio. 2003. 16, No 2. P. 26-28.
30. de Paiva R., Nogueira R.A., de Olivei C. et al. First-principles calculations of the effective mass parameters of AlxGa1-xN and ZnxCd1-xTe alloys. Brazilian Journal of Physics. 2002. 32, No 2A. P. 405-408.
https://doi.org/10.1590/S0103-97332002000200045
31. Andriyevsky B., Kashuba A.I., Kunyo I.M. et al. Electronic bands and dielectric functions of In0.5Tl0.5I solid state solution with structural defects. J. Electron. Mater. 2019. 48, No 9. P. 5586-5594.
https://doi.org/10.1007/s11664-019-07404-2
32. Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005. 220. P. 567-570.
https://doi.org/10.1524/zkri.220.5.567.65075
33. Perdew J.P., Ruzsinszky A., Csonka G.I. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008. 100, No 13. P. 136406.
https://doi.org/10.1103/PhysRevLett.100.136406
34. Monkhorst H.J. and Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976. 13, No 12. P. 5188.
https://doi.org/10.1103/PhysRevB.13.5188
35. Franiv A.V., Kashuba A.I., Bovgyra O.V., Futey O.V. Elastic properties of substitutional solid solutions InxTl1-õI and sounds wave velocities in them. Ukr. J. Phys. 2017. 62, No 8. P. 679-684.
https://doi.org/10.15407/ujpe62.08.0679
36. Swan C.C., Kosaka I. Voigt-Reuss topology optimization for structures with linear elastic material behaviours. Int. J. Numer. Meth. Eng. 1997. 40. P. 3033-3057.
https://doi.org/10.1002/(SICI)1097-0207(19970830)40:16<3033::AID-NME196>3.0.CO;2-Z
37. Kube C.M., Turner J.A. Voigt, Reuss, Hill, and self-consistent techniques for modeling ultrasonic scattering. AIP Conf. Proc. 2015. 1650, No 1. P. 926-934.
https://doi.org/10.1063/1.4914698
38. Pugh S.F., Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 1954. 45, No 367. P. 823-843.
https://doi.org/10.1080/14786440808520496
39. Gercek H. Poisson's ratio values for rocks. Intern. Journal of Rock Mechanics and Mining Sciences. 2007. 44, No 1. P. 1-13.
https://doi.org/10.1016/j.ijrmms.2006.04.011
40. Frantsevich I.N., Voronov F.F., Bokuta S.A., in: Frantsevich I.N. (Ed.), Elastic Constants and Elastic Moduli of Metals and Insulators, Handbook. Naukova Dumka, Kiev, 1982 (in Russian).
41. Aynyas M., Jha P.K. and Sanyal S.P. Structural, electronic, elastic and mechanical properties of ScNi, ScPd and ScPt: A FP-LAPW study. Adv. Mater. Res. 2014. 1047. P. 27-34.
https://doi.org/10.4028/www.scientific.net/AMR.1047.27
42. Mason W. Physical Acoustics and the Properties of Solids. Princeton, N.J.: D. Van Nostrand Co., Inc., 1958.
43. Haynes W.M., ed. CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press, 2011.
44. Freik D.M., Parashchuk Ò.Î., Volochanska B.P. Heat ñapacity and Debye temperature of CdTe, CdSe crystals. Physics and Chemistry of Solid State. 2014. 15, No 2. P. 282-287.
| |
|
|