Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 400-407 (2020).
References
1. Essahlaoui A., Essaoudi H., Hallaoui A., Bouhadda M., Labzour A., Housni A. Calculation of the thickness and optical constants of lead titanate thin films grown on MgO from their transmission spectra. J. Mater. Environ. Sci. 2018. 9, No 1. P. 228-234.
https://doi.org/10.26872/jmes.2018.9.1.26
2. Jin Y., Song B., Jia Zh., Zhang Y., Lin Ch., Wang X., Dai Sh. Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films. Opt. Exp. 2017. 25, No 1. P. 440-451.
https://doi.org/10.1364/OE.25.000440
3. Shaabana E.R., Yahiab S., El-Metwally E.G. Validity of Swanepoel's method for calculating the optical constants of thick films. Acta Physica Polonica A. 2012. 121, No 3. P. 628-635.
https://doi.org/10.12693/APhysPolA.121.628
4. Caglar M., Caglar Y., Ilican S. The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method. J. Optoelectron. Adv. M. 2006. 8. P. 1410-1413.
5. Petrus R.Yu., Ilchuk H.A., Kashuba A.I., Semkiv I.V., Zmiiovska E.O., Lys R.M. Optical properties of materials for solar energy based on cadmium chalcogenides thin films. Physics and Chemistry of Solid State. 2019. 20, No 4. P. 367-371.
https://doi.org/10.15330/pcss.20.4.367-371
6. Karpov A.G., Klemeshev V.A. Method for determining optical constants and the thickness of the thin film. Vestnik Sankt-Peterburg. Universiteta. Prikladnaia Matematika. 2017. 13, No 1. P. 17-26.
https://doi.org/10.21638/11701/spbu10.2017.102
7. Mulato M., Chambouleyron I., Birgin E.G., Martnez J.M. Determination of thickness and optical constants of amorphous silicon ?lms from transmittance data. Appl. Phys. Lett. 2000. 77. P. 2133-2135.
https://doi.org/10.1063/1.1314299
8. Hamh S.Y., Han J.W., Kim T.H., Lee J.S. Determination of the optical constants of thin films based on normal-incidence reflectance measure-ments. J. Korean Phys. Soc. 2013. 63, No 2. P. 241-245.
https://doi.org/10.3938/jkps.63.241
9. Mudavakkata V.H., Atuchinb V.V., Kruchininc V.N., Kayanid A., Ramana C.V. Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Opt. Mater. 2012. 34, No 5. P. 893-900.
https://doi.org/10.1016/j.optmat.2011.11.027
10. Jitian S. The determination of thickness and optical constants for PbSe film from IR reflectance spectra. Int. J. Eng. 2011. 9. P. 153-156.
11. Morozhenko V., Maslov V.P., Kachur N. Determination of Faraday angle under conditions of multiple-beam interference by using transmission and reflection spectra in non-polarized light. J. Quant. Spectrosc. Radiat. Transf. 2019. 236. P. 106597.
https://doi.org/10.1016/j.jqsrt.2019.106597
12. Moss T.S., Burrel G.J., Ellis B. Semiconductor Opto-Electronics. London, Butterworths, 1973.
https://doi.org/10.1016/B978-0-408-70326-0.50010-7
13. Malyutenko V.K., Chernyakovsky V.I., Piotrowski T. Characterization of oxygen impurity concen-tration in silicon based on thermal emission measurements. Infrared Phys. Technol. 1996. 37. P. 499-504.
https://doi.org/10.1016/1350-4495(95)00077-1
14. Zinovchuk A.V., Tkachenko A.K. Measurement of surface recombination velocity and bulk lifetime in Si wafers by transient behavior of excess thermal emission. Semiconductors. 2011. 45. P. 61-65.
https://doi.org/10.1134/S1063782611010246
15. Harbecke B. Coherent and incoherent reflection and transmission of multilayer structures. Appl. Phys. B. 1986. 39. P. 165-170.
https://doi.org/10.1007/BF00697414
16. Katsidis C.C., Siapkas D.I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 2002. 41, No 19. P. 3978-3987.
https://doi.org/10.1364/AO.41.003978
17. King S.W., Milosevic M. A method to extract absorption coefficient of thin films from transmission spectra of the films on thick substrates. J. Appl. Phys. 2012. 111. P. 073109-073109-9.
https://doi.org/10.1063/1.3700178
18. Kollyukh O.G., Morozhenko V. Angular and spectral peculiarities of coherent thermal radiation of the magneto-optical Fabry-Perot resonator in magnetic field. J. Opt. A: Pure Appl. Opt. 2009. 11. P. 085503.
https://doi.org/10.1088/1464-4258/11/8/085503
19. Madelung O. Semiconductors: Data Handbook. Berlin, Springer-Verlag, 2004.
https://doi.org/10.1007/978-3-642-18865-7
| |
|
|