Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (4) P. 408-414 (2020).


References

1. Nakamura S. III-V nitride based light-emitting de-vices. Solid State Commun. 1997. 102. P. 237-248.
https://doi.org/10.1016/S0038-1098(96)00722-3

2. Narukawa Y., Ichikawa M., Sanga D. et al. White light emitting diodes with super-high luminous effi-cacy. J. Phys. D: Appl. Phys. 2010. 43. P. 354002.
https://doi.org/10.1088/0022-3727/43/35/354002

3. Saito S., Hashimoto R., Hwang J. & Nunoue S. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range. Appl. Phys. Exp. 2013. 6. P. 111004.
https://doi.org/10.7567/APEX.6.111004

4. Hwang J.-I., Hashimoto R., Saito S. & Nunoue S. Development of InGaN-based red LED grown on (0001) polar surface. Appl. Phys. Exp. 2014. 7. P. 071003.
https://doi.org/10.7567/APEX.7.071003

5. Iida D., Niwa K., Kamiyama S. & Ohkawa K. Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure. Appl. Phys. Exp. 2016. 9. P. 111003.
https://doi.org/10.7567/APEX.9.111003

6. Damilano B. & Gil B. Yellow-red emission from (Ga,In)N heterostructures. J. Phys. D: Appl. Phys. 2015. 48. P. 403001.
https://doi.org/10.1088/0022-3727/48/40/403001

7. Park S.-H. & Chuang S.-L. Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B. 1999. 59. P. 4725-4737.
https://doi.org/10.1103/PhysRevB.59.4725

8. Takeuchi T., Amano H. & Akasaki I. Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells. Jpn. J. Appl. Phys. 2000. 39. P. 413-416.
https://doi.org/10.1143/JJAP.39.413

9. Zhu M., You Shi, Detchprohm Th. et al. Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes. physica status solidi (a). 2010. 207. P. 1305-1308.
https://doi.org/10.1002/pssa.200983645

10. Tessarek C., Figge S., Aschenbrenner T. et al. Strong phase separation of strained InxGa1?xN layers due to spinodal and binodal decomposition: Formation of stable quantum dots. Phys. Rev. B. 2011. 83. P. 115316.
https://doi.org/10.1103/PhysRevB.83.115316

11. Qi Y.D., Liang H., Wang D. et al. Comparison of blue and green InGaN/GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2005. 86. P. 101903.
https://doi.org/10.1063/1.1866634

12. Na J.H., Taylor R.A., Lee K.H. et al. Dependence of carrier localization in InGaN/GaN multiple-quan-tum wells on well thickness. Appl. Phys. Lett. 2006. 89. P. 253120.
https://doi.org/10.1063/1.2423232

13. Schwarz U.T. & Kneissl M. Nitride emitters go nonpolar. physica status solidi (RRL). 2007. 1. P. A44-A46.
https://doi.org/10.1002/pssr.200750018

14. Sato H., Tyagi A., Zhong H. et al. High power and high efficiency green light emitting diode on free-standing semipolar (112) bulk GaN substrate. physica status solidi (RRL). 2007. 1. P. 162-164.
https://doi.org/10.1002/pssr.200701098

15. El-Masry N.A., Piner E.L., Liu S.X. & Bedair S.M. Phase separation in InGaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1998. 72. P. 40-42.
https://doi.org/10.1063/1.120639

16. Miura A., Nagai T., Senda R. et al. Realization of low-dislocation-density, smooth surface, and thick GaInN films on m-plane GaN templates. J. Cryst. Growth. 2008. 310. P. 3308-3312.
https://doi.org/10.1016/j.jcrysgro.2008.04.020

17. Hirasaki, T., Eriksson M., Quang TuThieu et al. Growth of thick and high crystalline quality InGaN layers on GaN ( ) substrate using tri-halide va-por phase epitaxy. J. Cryst. Growth. 2016. 456. P. 145 -150.
https://doi.org/10.1016/j.jcrysgro.2016.08.019

18. Pristovsek M., Kadir A., Meissner C. et al. Surface transition induced island formation on thin strained InGaN layers on GaN (0001) in metal-organic vapour phase epitaxy. J. Appl. Phys. 2011. 110. P. 073527.
https://doi.org/10.1063/1.3647782

19. Sekiguchi H., Kishino K. & Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 2010. 96. P. 231104.
https://doi.org/10.1063/1.3443734

20. Mitchell B., Dierolf V., Gregorkiewicz T. & Fujiwara Y. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping. J. Appl. Phys. 2018. 123. P. 160901.
https://doi.org/10.1063/1.5010762

21. Hussain S., Lekhal K., Hyonju Kim-Chauveau et al. Capping green emitting (Ga,In)N quantum wells with (Al,Ga)N: impact on structural and optical pro-perties. Semicond. Sci. Technol. 2014. 29. P. 035016.
https://doi.org/10.1088/0268-1242/29/3/035016

22. Lekhal K., Hussain S., De Mierry Ph. et al. Optimized In composition and quantum well thick-ness for yellow-emitting (Ga,In)N/GaN multiple quantum wells. J. Cryst. Growth. 2016. 434. P. 25-29.
https://doi.org/10.1016/j.jcrysgro.2015.10.026

23. Lekhal K., Damilano B., Ngo H.T. et al. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission. Appl. Phys. Lett. 2015. 106. P. 142101.
https://doi.org/10.1063/1.4917222

24. Ozaki T., Funato M. & Kawakami Y. Red-emitting InxGa1?xN/InyGa1?yN quantum wells grown on lattice-matched InyGa1?yN/ScAlMgO4(0001) templates. Appl. Phys. Exp. 2018. 12. P. 011007.
https://doi.org/10.7567/1882-0786/aaf4b1

25. Kimizuka N. & Mohri T. Structural classification of RAO3(MO)n compounds (R = Sc, In, Y, or lantha-nides; A = Fe(III), Ga, Cr, or Al; M = divalent ca-tion; n = 1-11). J. Solid State Chem. 1989. 78. P. 98 -107.

26. Ozaki T., Takagi Y., Nishinaka J. et al. Metalorganic vapor phase epitaxy of GaN and lattice-matched InGaN on ScAlMgO4(0001) substrates. Appl. Phys. Exp. 2014. 7. P. 091001. https://doi.org/10.7567/APEX.7.091001
https://doi.org/10.1016/0022-4596(89)90132-1

27. Bernardini F., Fiorentini V. & Vanderbilt D. Spon-taneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B. 1997. 56. P. R10024-R10027.
https://doi.org/10.1103/PhysRevB.56.R10024

28. Bernardini F. & Fiorentini V. First-principles calculation of the piezoelectric tensor d? of III-V nitrides. Appl. Phys. Lett. 2002. 80. P. 4145-4147.
https://doi.org/10.1063/1.1482796

29. Thranhardt A., Ell C., Khitrova G. & Gibbs H.M. Relation between dipole moment and radiative lifetime in interface fluctuation quantum dots. Phys. Rev. B. 2002. 65. 035327.
https://doi.org/10.1103/PhysRevB.65.035327

30. Bernardini F. & Fiorentini V. Polarization fields in nitride nanostructures: 10 points to think about. Appl. Surf. Sci. 2000. 166. P. 23-29.
https://doi.org/10.1016/S0169-4332(00)00434-7

31 Narukawa Y., Sano M., Ichikawa M. et al. Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage. Jpn. Appl. Phys. 2007. 46. P. L963-L965.
https://doi.org/10.1143/JJAP.46.L963

32 Meneghini M., Tazzoli A., Mura G. et al. A review on the physical mechanisms that limit the reliability of GaN-based LEDs. IEEE Transactions on Electron Devices. 2010. 57. P. 108-118.
https://doi.org/10.1109/TED.2009.2033649

33 Nikolaev V.V., Portnoi M.E. & Eliashevich I. Pho-ton recycling white Light Emitting Diode based on InGaN multiple quantum well heterostructure. phys. status solidi (a). 2001. 183. P. 177-182.
https://doi.org/10.1002/1521-396X(200101)183:1<177::AID-PSSA177>3.0.CO;2-H

34 Hussain S., Zerin T. & Khan M.A. Design and si-mulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode. Frontiers of Optoelectronics. 2017. 10. P. 370.
https://doi.org/10.1007/s12200-017-0705-9

35 Hussain S., Damilano B., Hyonju Kim-Chauveau et al. Metal organic vapor phase epitaxy of monoli-thic two-color Light-Emitting Diodes using an InGaN-based light converter. Appl. Phys. Exp. 2013. 6. P. 092105.
https://doi.org/10.7567/APEX.6.092105