Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 355-361 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.355


References

1. Evtukh A., Hartnagel H., Yilmazoglu O., Mimura H. and Pavlidis D. Vacuum Nanoelectronic Devices: Novel Electron Sources and Applications. John Wiley & Sons, Ltd., 2015. https://doi.org/10.1002/9781119037989

2. https://www.tf.uni-kiel.de/matwis/amat/semi_en/ kap_a/illustr/ia_1_2.html

3. Taki Y., Kitiwan M., Katsui H., Goto T. Electrical and thermal properties of nitrogen-doped SiC. J. Jpn. Soc. Powder and Powder Metallurgy. 2018. 65. P. 508-512. https://doi.org/10.2497/jjspm.65.508

4. Liu W., Li Q., Yang X., Chen X. and Xu X. Synthesis and characterization of N-doped SiC powder with enhanced photocatalytic and photoelectrochemical performance. Catalysts. 2020. 10. P. 769. https://doi.org/10.3390/catal10070769

5. Gill V., Guduru P.R., Sheldon B.W. Electric field induced surface diffusion and micro/nano-scale island growth. Intern. Journal of Solids and Structures. 2008. 45. P. 943-958. https://doi.org/10.1016/j.ijsolstr.2007.09.010

6. Goryachko A., Yeromenko Y., Henkel K., Wollweber J., Schmei?er D. The Si(001)/C2H2 interaction to form a buffer layer for 3C-SiC growth. physica status solidi (a). 2004. 201. P. 245-248.. https://doi.org/10.1002/pssa.200303914

7. Goriachko A., Melnik P.V., Nakhodkin M.G. A suggestion of the graphene/Ge(111) structure based on ultra-high vacuum scanning tunneling micro-scopy investigation. Ukr. J. Phys. 2016. 61. P. 75-87. https://doi.org/10.15407/ujpe61.01.0075

8. Goriachko A.M., Kulyk S.P., Melnik P.V., Nakhodkin M.G. Scanning tunneling microscopy investigation of the Si(001)-c(8?8). Ukr. J. Phys. 2015. 60. P. 148-152. https://doi.org/10.15407/ujpe60.02.0148

9. Giubileo F., Di Bartolomeo A., Iemmo L., Luongo G. and Urban F. Field emission from carbon nanostructures. Appl. Sci. 2018. 8. P. 526. https://doi.org/10.3390/app8040526

10. Biswas D. A universal formula for the field enhancement factor. Physics of Plasmas. 2018. 25. P. 043113. https://doi.org/10.1063/1.5025694

11. Beattie J.M.A., Goss J.P., Rayson M.J. and Briddon P.R. Structure and electron affinity of the 4H-SiC (0001) surfaces: a methodological approach for polar systems. J. Phys.: Condens. Matter. 2021. 33. P. 165003. https://doi.org/10.1088/1361-648X/abf0be

12. Latreche A. Determination of temperature depen-dence of electron effective mass in 4H-SiC from reverse current-voltage characteristics of 4H-SiC Schottky barrier diodes. SPQEO. 2020. 23. P. 271-275. https://doi.org/10.15407/spqeo23.03.271

13. Evtukh A., Litovchenko V., Goncharuk N., and Mimura H. Electron emission Si-based resonant-tunneling diode. Journal of Vacuum Science and Technology B. 2012. 30. P. 022207. https://doi.org/10.1116/1.3693977

14. Dantas M.O.S., Criado D., A. Zuniga et al. ZnO nanowire-based field emission devices through a microelectronic compatible route. Journal of Integrated Circuits and Systems. 2020. 15. P. 1-6. https://doi.org/10.29292/jics.v15i1.105

15. Guo C., Cheng L., Ye F., Zhang Q. Adjusting the morphology and properties of SiC nanowires by catalyst control. Materials. 2020. 13. P. 5179. https://doi.org/10.3390/ma13225179

16. Jansson V., Baibuz E., Kyritsakis A. et al. Growth fields mechanism for nanotips in high electric fields. Nanotechnology. 2020. 31. P. 355301. https://doi.org/10.1088/1361-6528/ab9327