Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 362-371 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.362
References
1. Goodenough J.B. Metallic oxides. Prog. Solid State Chem. 1971. 5. P. 145-399.
https://doi.org/10.1016/0079-6786(71)90018-5
2. Dobrosavljevic V., Trivedi N., Valles J.M., Jr. Conductor-Insulator Quantum Phase Transitions. Published to Oxford Scholarship Online, 2012.
https://doi.org/10.1093/acprof:oso/9780199592593.001.0001
3. Liu K., Lee S., Yang S., Delaire O., Wu J. Recent progresses on physics and applications of vanadium dioxide. Materials Today. 2018. 21, No 8. P. 875-896.
https://doi.org/10.1016/j.mattod.2018.03.029
4. Kas?rga T., Sun D., Park J. et al. Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy. Nat. Nanotechnol. 2012. 7. P. 723-727.
https://doi.org/10.1038/nnano.2012.176
5. Liu K., C Ch., Cheng Z. et al. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett. 2012. 12, No 12. P. 6302-6308.
https://doi.org/10.7312/li--16274-013
6. Bae S.-H., Lee S., Koo H. The memristive pro-perties of a single VO2 nanowire with switching controlled by self-heating. Adv. Mater. 2013. 25, No 36. P. 5098-5103.
https://doi.org/10.1002/adma.201302511
7. Hu B., Ding Y., Chen W. et al. External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor. Adv. Mater. 2010. 22, No 45. P. 5134-5139.
https://doi.org/10.1002/adma.201002868
8. Savo S., Zhou Y., Castaldi G. et al. Reconfigurable anisotropy and functional transformations with VO2-based metamaterial electric circuits. Phys. Rev. B. 2015. 91, No 13. P. 134105.
https://doi.org/10.1103/PhysRevB.91.134105
9. Kats M.A., Blanchard R., Zhang S. et al. Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broad-band negative differential thermal emittance. Phys. Rev. X. 2013. 3, No 4. P. 041004.
https://doi.org/10.1103/PhysRevX.3.041004
10. Wriedt H.A. The O-V (Oxygen-Vanadium) system. Bull. of Alloy Phase Diagrams. 1989. 10, No 3. P. 271-277.
https://doi.org/10.1007/BF02877512
11. D'Elia A., Rezvani S.J., Zema N. et al. Stoichiometry and disorder influence over electronic structure in nanostructured VOx films. J Nanopart Res. 2021. 23, No 1. Article: 33.
https://doi.org/10.1007/s11051-020-05130-z
12. Morin F. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959. 3, No 34. P. 34-36.
https://doi.org/10.1103/PhysRevLett.3.34
13. Blackman C.S., Piccirillo C., Binions R., Parkin I.P. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing. Thin Solid Films. 2009. 517, No 16. P. 4565-4570.
https://doi.org/10.1016/j.tsf.2008.12.050
14. Warwick M., Binions R. Advances in thermochromic vanadium dioxide films. J. Mater. Chem. A. 2014. 2. P. 3275-3292.
https://doi.org/10.1039/C3TA14124A
15. Gao Y., Luo H., Zhang Z. et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. Nano Energy. 2012. 1. P. 221-246.
https://doi.org/10.1016/j.nanoen.2011.12.002
16. Schlag H.J., Scherber W. New sputter process for VO2 thin films and examination with MIS-elements and C-V-measurements. Thin Solid Films. 2000. 366, No 1-2. P. 28-31.
https://doi.org/10.1016/S0040-6090(00)00711-2
17. Wei J., Ji H., Guo W.H., Nevidomskyy A.H., Natelson D. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nat. Nanotechnol. 2012. 7. P. 357-362.
https://doi.org/10.1038/nnano.2012.70
18. Wu C.Z., Wei H., Ning B., Xie Y. New vanadium oxide nanostructures: Controlled synthesis and yheir smart electrical switching properties. Adv. Mater. 2010. 22, No 17. P. 1972-1976.
https://doi.org/10.1002/adma.200903890
19. Brassard D., Fourmax S., Jean-Jacques M., Kieffer J.C., El Khakani M.A. Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films. Appl. Phys. Lett. 2005. 87, No 5. P. 051910.
https://doi.org/10.1063/1.2001139
20. Bialas H., Dillenz A., Downar H., Ziemann P. Epitaxial relationships and electrical properties of vanadium oxide films on r-cut sapphire. Thin Solid Films. 1999. 338, No 1-2. P. 60-69.
https://doi.org/10.1016/S0040-6090(98)00995-X
21. Lee M.-H., Kim M.-G. RTA and stoichiometry effect on the thermochromism of VO2 thin films. Thin Solid Films. 1996. 286, No 1-2. P. 219-222.
https://doi.org/10.1016/S0040-6090(96)08536-7
22. Lopez R., Feldman L.C., Haglund R.F. Size-dependent optical properties of VO2 nanoparticle arrays. Rev. Lett. 2004. 93, No 17. P. 177403.
https://doi.org/10.1103/PhysRevLett.93.177403
23. Goltvyanskyi Yu., Khatsevych I., Kuchuk A. et al. Structural transformation and functional properties of vanadium oxide films after low-temperature annealing. Thin Solid Films. 2014. 564. P. 179-185.
https://doi.org/10.1016/j.tsf.2014.05.067
24. Melnyk V.P., Khazevich I.V., Kladko V.P., Kuchuk A.V., Nikirin V.V., Romanyuk B.M. Low-temperature method for thermochromic high ordered VO2 phase formation. Mater. Lett. 2012. 68. P. 215-217.
https://doi.org/10.1016/j.matlet.2011.10.075
25. Melnik V.P., Khatsevych I.M., Goltvyanskyi Yu.V. et al. Thermochromic properties of vanadium dioxide films obtained by magnetron sputtering. Ukr. J. Phys. 2011. 56, No 6. P. 534-540.
26. Romanyuk A., Steiner R., Marot L., Oelhafen P. Temperature-induced metal-semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy. Solar Energy Materials & Solar Cells. 2007. 91, No 19. P. 1831-1835.
https://doi.org/10.1016/j.solmat.2007.06.013
27. Ren Q., Cai Y., Gao Y. DFT study of M-doped (M = P, As, Bi) VO2 for thermochromic energy-saving materials. Comput. Mater. Sci. 2018. 150. P. 337-345.
https://doi.org/10.1016/j.commatsci.2018.04.015
28. Heckman E.M., Gonzalez L.P., Guha S., Barnes J.O., Carpenter A. Electrical and optical switching properties of ion implanted VO2 thin films. Thin Solid Films. 2009. 518, No 1. P. 265-268.
https://doi.org/10.1016/j.tsf.2009.05.063
29. Sabov T.M., Oberemok O.S., Dubikovskyi O.V. et al. Oxygen ion-beam modification of vanadium oxide films for reaching a high value of the resistance temperature coefficient. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017. 20, No 2. P. 153-158.
https://doi.org/10.15407/spqeo20.02.153
30. Thery V., Boulle A., Crunteanu A. et al. Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films. Phys. Rev. B. 2016. 93, No 18. P. 184106.
https://doi.org/10.1103/PhysRevB.93.184106
31. Mani R.G., Ramanathan S. Observation of a uniform temperature dependence in the electrical resistance across the structural phase transition in thin film vanadium oxide (VO2). Appl. Phys. Lett. 2007. 91, No 6. P. 062104.
https://doi.org/10.1063/1.2767189
32. Dou Y.-K., Li J.-B., Cao M.-S. et al. Oxidizing annealing effects on VO2 films with different microstructures. Appl. Surf. Sci. 2015. 345. P. 232-237.
https://doi.org/10.1016/j.apsusc.2015.03.044
33. Yamazaki S., Li Ch., Ohoyama K., Nishi M., Ichihara M., Ueda H., Ueda Y. Synthesis, structure and magnetic properties of V4O9 - A missing link in binary vanadium oxides. J. Solid State Chem. 2010. 183, No 7. P. 1496-1503.
https://doi.org/10.1016/j.jssc.2010.04.007
34. Elliott S.R. Medium-range structural order in covalent amorphous solids. Nature. 1991. 354. P. 445-452.
https://doi.org/10.1038/354445a0
35. Odelevskii V.I. Calculation of generalized conduc-tivity of heterogeneous systems. Zhurnal Tekhni-cheskoi Fiziki. 1951. 21. P. 1379-1381 (in Russian).
36. Dulnev G.N. and Zarichnyak Y.P. Thermal Conductivity of Mixtures and Composite Materials. Leningrad, Energy (in Russian).
37. Dulnev G.N. and Novikov V.V. Transport Processes in Inhomogeneous Media. Leningrad, Energoatomizdat, 1991 (in Russian).
38. Bugaev A.A., Zaharchenia B.P., Chudnovskyi F.A. Metal-Semiconductor Phase Transition and its Applications. Leningrad, Nauka, 1979 (in Russian).
| |
|
|