Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 399-406 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.399


References

1. Tian J., Lai C., Feng G. et al. Review of recent progresses on Gallium Nitride transistor in power conversion application. Int. J. Sustainable Energy. 2020. 39, No 1. P. 88-100. https://doi.org/10.1080/14786451.2019.1657866

2. Zhang A., Zhou Q., Yang C. et al. A high-accuracy AlGaN/GaN reverse blocking CRT with hybrid trench cathode. Nanoscale Res. Lett. 2019. 14. Article No. 23. https://doi.org/10.1186/s11671-019-2860-y

3. Azurza A.J., Zulauf G.D., Kolar J.W. and Deboy G. New figure-of-merit combining semiconductor and multi-level converter properties. IEEE Open Journal of Power Electronics. 2020. 1. P. 328-338. https://doi.org/10.1109/OJPEL.2020.3018220

4. Jiya N. and Gouws R. Overview of power electronic switches: A summary of the past, state-of-the-art and illumination of the future. Micromachines. 2020. 11. P. 2-29. https://doi.org/10.3390/mi11121116

5. Baliga B.J. Fundamentals of Power Semiconductor Devices. New York, 2019. https://doi.org/10.1007/978-3-319-93988-9

6. Bahat-Treidel E., Hilt O., Zhytnytska R. et al. Fast-switching GaN-based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking. IEEE Electron Device Lett. 2012. 33, No 3. P. 357-359. https://doi.org/10.1109/LED.2011.2179281

7. Merve Ozbek A., Baliga B.J. Finite-zone argon implant edge termination for high-voltage GaN Schottky rectifiers. IEEE Electron Device Lett. 2011. 32, No 10. P. 1367-1369. https://doi.org/10.1109/LED.2011.2162221

8. Sundaramoorthy V.K., Nistor I. Study of edge termination structures for high power GaN Schottky diodes. phys. status solidi C. 2011. 8, No 7/8. P. 2270-2272. https://doi.org/10.1002/pssc.201001032

9. Sun Y., Kang X., Zheng Y. et al. Review of the recent progress on GaN-based vertical power Schottky barrier diodes. Electronics. 2019. 8, No 5. P. 575. https://doi.org/10.3390/electronics8050575

10. Han S., Song J., and Chu R. Design of GaN/ AlGaN/GaN super-heterojunction Schottky diode. IEEE Trans. Electron Devices. 2020. 67, No 1. P. 69-74. https://doi.org/10.1109/TED.2019.2953843

11. Zhang Y., Lu X., and Zou X. Device design assessment of GaN merged p-i-n Schottky diodes. Electronics. 2019. 8. P. 1550-1561. https://doi.org/10.3390/electronics8121550

12. Suemitsu T., Kobayashi K., Hatakeyama S. A new process approach for slant field plates in GaN, based high-electron-mobility transistors. Jpn. J. Appl. Phys. 2016. 55, No 2. P. 01AD02-06. https://doi.org/10.7567/JJAP.55.01AD02

13. Yang J., Ahn S., Ren F. et al. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3. Appl. Phys. Lett. 2017. 110. P. 192101-4. https://doi.org/10.1063/1.4983203

14. Ma J., Matioli E. Field plate design for low leakage current in lateral GaN power Schottky diodes: Role of the pinch-off voltage. IEEE Electron Device Lett. 2017. 38, No 9. P. 1298-1301. https://doi.org/10.1109/LED.2017.2734644

15. Wong J., Shinohara K., Corrion A.L et al. Novel asymmetric slant field plate technology for high-speed low-dynamic Ron E/D-mode GaN HEMTs. IEEE Electron Device Lett. 2017. 38, No. 1. P. 95-98. https://doi.org/10.1109/LED.2016.2634528

16. Cucak D., Vasic M., Garcia O. et al. Physics-based analytical model for input, output and reverse capacitance of a GaN HEMT with the field-plate structure. IEEE Trans. Power Electron. 2017. 32, No 3. P. 2189-2202. https://doi.org/10.1109/TPEL.2016.2569404

17. Zhu X., Gu P., Wu H. et al. Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering. AIP Adv. 2017. 7. P. 1253261-8. https://doi.org/10.1063/1.5017242

18. Lee M., Ahn C.W., Vu T.K.O. et al. Current transport mechanism in palladium Schottky contact on Si-based freestanding GaN. Nanomaterials. 2020. 10. P. 297-303. https://doi.org/10.3390/nano10020297

19. Sadao Adachi. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. Japan, Wiley, 2009.

20. Garg M., Kumar A., Sun H., Liao C., Li X., and Singh R. Temperature dependent electrical studies on Cu/AlGaN/GaN Schottky barrier diodes with its microstructural characterization. Journal of Alloys and Compounds. 2019. 806. P. 852-857. https://doi.org/10.1016/j.jallcom.2019.07.234

21. Akkaya A. and Ayyildiz E. Effects of post annealing on I-V-T characteristics of (Ni/Au)/Al0.09Ga0.91N Schottky barrier diodes. J. Phys. Conf. Series. 2016. 707. P. 012015. https://doi.org/10.1088/1742-6596/707/1/012015

22. Reddy D.S., Reddy M.B., Nanda N. et al. Schottky barrier parameters of Pd/Ti contacts on n-type InP revealed from I-V-T and C-V-T measurements. J. Modern Phys. 2011. 2. P. 113-123.

23. Thao C.P., Kuo D.H. Electrical and structural characteristics of Ge-doped GaN thin films and its hetero-junction diode made all by RF reactive sputtering. Mater. Sci. in Semiconductor Proc. 2018. 74. P. 336-341. https://doi.org/10.1016/j.mssp.2017.10.024

24. Rao P.K., Park B.-G., Lee S.-T., Kim M.-D., Oh J.-E. Temperature-dependent electrical properties of (Pt/Au)/Ga-polarity GaN/Si(111) Schottky diode. Microelectron. Eng. 2012. 93. P. 100-104. https://doi.org/10.1016/j.mee.2011.11.019

25. Alshahed M., Heuken L., Alomari M. et al. Low-dispersion, high-voltage, low-leakage GaN HEMTS on native GaN substrates. IEEE Trans. Electron Devices. 2017. 14, No. 8. P. 1-8.

26. Rao P.K., Park B., Lee S.-T., Noh Y.-K., Kim M.-D., and Oh J.-E. Analysis of leakage current mechanisms in Pt/Au Schottky contact on Ga-polarity GaN by Frenkel-Poole emission and deep level studies. J. Appl. Phys. 2011. 110. P. 013716. https://doi.org/10.1063/1.3607245

27. Kim H., Lee D.H., and Myung H.S. Contact area-dependent electron transport in Au/n-type Ge Schottky junction. Korean Journal of Materials Research. 2016. 26, No. 8. P. 412-416. https://doi.org/10.3740/MRSK.2016.26.8.412