Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 419-424 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.419


References

1. Tian B., Zheng X., Kempa T.J., Fang Y., Yu N., Yu G., Huang J., and Lieber C.M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature. 2007. 449. P. 885-890. https://doi.org/10.1038/nature06181

2. Colombo C., Hei? M., Gratzel M., and Fontcuberta i Morral A. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009. 94, No 17. P. 173108. https://doi.org/10.1063/1.3125435

3. Dong Y., Tian B., Kempa T.J., and Lieber C.M. Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 2009. 9, No 5. P. 2183-2187. https://doi.org/10.1021/nl900858v

4. Yoo J., Dayeh S.A., Tang W., and Picraux S.T. Epitaxial growth of radial Si p-i-n junctions for photovoltaic applications. Appl. Phys. Lett. 2013. 102, No 9. P. 093113. https://doi.org/10.1063/1.4794541

5. Zhang Y., Sanchez A.M., Aagesen M. et al. Growth and fabrication of high-quality single nanowire devices with radial p-i-n junctions. Small. 2019. 15, No 3. P. 1803684. https://doi.org/10.1002/smll.201803684

6. Soci C., Zhang A., Bao X.-Y., Kim H., Lo Y., and Wang D. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010. 10, No 3. P. 1430-1449. https://doi.org/10.1166/jnn.2010.2157

7. Goktas N.I., Wilson P., Ghukasyan A., Wagner D., McNamee S., and LaPierre R.R. Nanowires for energy: A review. Appl. Phys. Rev. 2018. 5, No 4. P. 041305. https://doi.org/10.1063/1.5054842

8. Xiang J., Lu W., Hu Y., Wu Y., Yan H., and Lieber C.M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature. 2006. 441. P. 489-493. https://doi.org/10.1038/nature04796

9. Jiang X., Xiong Q., Nam S., Qian F., Li Y., and Lieber C.M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, No 10. P. 3214-3218. https://doi.org/10.1021/nl072024a

10. Tomioka K., Motohisa J., Hara S., Hiruma K., and Fukui T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010. 10, No 5. P. 1639-1644. https://doi.org/10.1021/nl9041774

11. Hua B., Motohisa J., Kobayashi Y., Hara S., and Fukui T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 2009. 9, No 1. P. 112-116. https://doi.org/10.1021/nl802636b

12. Borblik V.L. Effect of circular p-n junction curvature on the diode current density. J. Electron. Mater. 2016. 45, No 8. P. 4117-4121. https://doi.org/10.1007/s11664-016-4597-z

13. Christesen J.D., Zhang X., Pinion C.W., Celano T.A., Flynn C.J., and Cahoon J.F. Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions. Nano Lett. 2012. 12, No 11. P. 6024-6029. https://doi.org/10.1021/nl303610m

14. Borblik V.L. Electrostatics of nanowire radial p-i-n diode. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2019. 22, No 2. P. 201-205. https://doi.org/10.15407/spqeo22.02.201

15. Tian B., Kempa T.J. and Lieber C.M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009. 38. P. 16-24. https://doi.org/10.1039/B718703N

16. Benda H. and Spenke E. Reverse recovery processes in silicon power rectifiers. Proc. IEEE. 1967. 55, No 12. P. 1331-1354. https://doi.org/10.1109/PROC.1967.5834

17. Herlet A. The forward characteristic of silicon power rectifiers at high current densities. Solid State Electron. 1968. 11, No 8. P. 717-742. https://doi.org/10.1016/0038-1101(68)90053-1