Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (4) P. 450-456 (2021).
DOI: https://doi.org/10.15407/spqeo24.04.450
References
1. Addanki S., Amiri I.S., and Yupapin P. Review of optical fibers-introduction and applications in fiber lasers. Results in Phys. 2018. 10. P. 743-750.
https://doi.org/10.1016/j.rinp.2018.07.028
2. Ellis A.D., Zhao J. and Cotter D. Approaching the non-linear Shannon limit. J. Lightwave Technol. 2010. 28, No 4. P. 423-433.
https://doi.org/10.1109/JLT.2009.2030693
3. Kremenetskaya Y.A., Markov S.E., and Melnyk Yu.V. Structural optimization of optoelectronic components in millimeter-wave radio-transmitting modules. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2020. 23, No 4. P. 424-430.
https://doi.org/10.15407/spqeo23.04.424
4. Humayun M.A., Rashid M.A., Malek F.A., and Hussain A.N. Effect of lattice constant on band-gap energy and optimization and stabilization of high-temperature InxGa1?xN quantum-dot lasers. J. Russ. Laser Res. 2012. 33, No 4. P. 387-394.
https://doi.org/10.1007/s10946-012-9294-7
5. Jain V., Bhatia R. Review on nonlinearity effect in radio over fiber system and its mitigation. J. Opt. Commun. 2021.
https://doi.org/10.1515/joc-2021-0044
6. Mustafa F.M., Abdelhalim M.M., Aly M.H., Barakat T.M. Dispersion compensation analysis of optical fiber link using cascaded apodized FBGs hybrid with maximum time division multiplexing transmission technique. Optical and Quantum Electronics. 2021. 53, No 7. Article number 358.
https://doi.org/10.1007/s11082-021-03006-7
7. Lawan S.H., Ajiya M., Shu'aibu D.S. Numerical simulation of chromatic dispersion and fiber attenuation in a single-mode optical fiber system. IOSR Journal of Electronics and Communication Engineering. 2012. 3, Issue 6. P. 31-34.
https://doi.org/10.9790/2834-0363134
8. Agrawal G.P. Fiber-Optic Communication Systems. 4th ed. John Wiley & Sons, Inc, New York, 2010.
https://doi.org/10.1002/9780470918524
9. Kothapalli M.K. Dispersion Managed Soliton. Doctoral dissertation, California State University, Northridge, 2018.
10. Senior J.M., Jamro M.Y. Optical Fiber Communica-tions: Principles and Practice. Pearson Education, 2009.
11. Jin X., Payne F.P. Numerical investigation of microbending loss in optical fibres. J. Lightwave Technol. 2016. 34, No 4. P. 1247-1253.
https://doi.org/10.1109/JLT.2015.2503560
12. Liao Y., Song C., Xiang Y., Dai X. Recent advances in spatial self-phase modulation with 2D materials and its applications. Annalen der Physik. 2020. 532, No 12. P. 2000322.
https://doi.org/10.1002/andp.202000322
13. Delcourt E., Jebali N., Bodiou L. et al. Self-phase modulation and four-wave mixing in a chalcogenide ridge waveguide. Opt. Mater. Exp. 2020. 10, No 6. P. 1440-1450.
https://doi.org/10.1364/OME.393535
14. Villar I. Del. Propagation of light through optical fibre. In: Optical Fibre Sensors: Fundamentals for Development of Optimized Devices. Eds I. Del Villar, I.R. Matias. Ch. 2. 2020. P. 17-48.
https://doi.org/10.1002/9781119534730.ch2
15. Hossain M.M., Humayun M.A., Hasan M.T. et al. Proposal of high performance 1.55 µm quantum dot heterostructure laser using InN. IEICE Trans. Electron. 2012. 95, No C2. P. 255-261.
https://doi.org/10.1587/transele.E95.C.255
16. Tsang W.T., Olsson N.A. Preparation of 1.78-?m wavelength Al0.2Ga0.8Sb/GaSb double-heterostruc-ture lasers by molecular beam epitaxy. Appl. Phys. Lett. 1983. 43. P. 8-10.
https://doi.org/10.1063/1.94132
17. Tanaka K. Optical Nonlinearity in Photonic Glasses. Springer Handbook of Electronic and Photonic Materials. Springer, Cham. 2017.
https://doi.org/10.1007/978-3-319-48933-9_42/a>
18. Poletti F., Wheeler N.V., Petrovich M.N. et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum. Nature Photon. 2013. 7, No 4. P. 279-284.
https://doi.org/10.1038/nphoton.2013.45
19. Omatsu T., Kong H.J., Park S. et al. The current trends in SBS and phase conjugation. Laser and Particle Beams. 2012. 30, No 1. P. 117-174.
https://doi.org/10.1017/S0263034611000644
20. Pan Z., Weng Y., Wang J. Investigation of nonlinear effects in few-mode fibers. Photon. Network Commun. 2016. 31, No 2. P. 305-315.
https://doi.org/10.1007/s11107-015-0521-3
21. Garmire E. Perspectives on stimulated Brillouin scattering. New J. Phys. 2017. 19, No 1. P. 011003.
https://doi.org/10.1088/1367-2630/aa5447
22. Bai Z., Yuan H., Liu Z. et al. Stimulated Brillouin scattering materials, experimental design and appli-cations: A review. Opt. Mater. 2018. 75. P. 626-645.
https://doi.org/10.1016/j.optmat.2017.10.035
| |
|
|