Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (4), P. 385-393 (2022).
DOI: https://doi.org/10.15407/spqeo25.04.385
References
1. Pelenitsyn V., Korotaev P. First-principle study of radiation defects in silicon. Computat. Mater. Sci. 2022. 207. P. 111273. https://doi.org/10.1016/j.commatsci.2022.111273.
2. Warschkow O., Curson N.J., Schofield S.R. et al. Reaction paths of phosphine dissociation on silicon (001). J. Chem. Phys. 2016. 144, No 1. P. 014705. https://doi.org/10.1063/1.4939124.
3. Naeem A., Qureshi A.W., Arshad S. et al. Bioche-mical toxic response of phosphine on human health estimated from enzymatic variance in Trogoderma granarium. Dose-Response. 2022. 20, No 2. https://doi.org/10.1177/15593258221095327.
4. Cho E.T., Ok Y., Ryu K. et al. Comparison of POCl3 diffusion with phosphorus ion implantation for Czochralski and quasi-mono silicon solar cells. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014. P. 2966–2968 https://doi.org/10.1109/PVSC.2014.6925554.
5. Rohatgi A., Rounsaville B., Ok Y.-W. et al. Fabrication and modeling of high-efficiency front junction n-type silicon solar cells with tunnel oxide passivating back contact. IEEE Journal of Photovoltaics. 2017. 7, No 5. P. 1236–1243. https://doi.org/10.1109/JPHOTOV.2017.2715720.
6. Niewelt T., Richter A., Kho T.C. et al. Taking monocrystalline silicon to the ultimate lifetime limit. Solar Energy Materials and Solar Cells. 2018. 185. P. 252–259. https://doi.org/10.1016/j.solmat.2018.05.040.
7. Kalkofen B., Ahmed B., Beljakowa S. et al. Atomic layer deposition of phosphorus oxide films as solid sources for doping of semiconductor structures. 2018 IEEE 18th Int. Conf. on Nanotechnology (IEEE-NANO), 2018. P. 1–4. https://doi.org/10.1109/NANO.2018.8626235.
8. Polley C.M., Clarke W.R., Miwa J.A. et al. Microscopic four-point-probe resistivity measure-ments of shallow, high density doping layers in silicon. Appl. Phys. Lett. 2012. 101. P. 262105. https://doi.org/10.1063/1.4773485.
9. Kukurudziak M.S., Andreeva O.P., Lipka V.M. High-resistance p-type silicon-based p-i-n photo-diode with high responsivity at the wavelength of 1060 nm. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2020. No 5–6. P. 16–19 (in Russian). http://dx.doi.org/10.15222/TKEA2020.5-6.16.
10. Moayedfar M. and Assadi M.K. Various types of anti-reflective coatings (Arcs) based on the layer composition and surface topography: A review. Rev. Adv. Mater. Sci. 2018. 53, No 2. P. 187–205. https://doi.org/10.1515/rams-2018-0013.
11. Ravi K.V. Imperfections and Impurities in Semiconductor Silicon. New York, Wiley, 1981.
12. Kukurudziak M.S. Formation of dislocations during phosphorus doping in the technology of silicon p-i-n photodiodes and their influence on dark currents. Journal of Nano- and Electronic Physics. 2022. 14, No 4. P. 04015(6 p.). https://doi.org/10.21272/jnep.14(4).04015.
13. Kukurudziak M.S., Maistruk E.V. Features of diffu-sion doping and boron gettering of silicon p-i-n photodiodes. 2022 IEEE 3rd KhPI Week on Advan-ced Technology (KhPIWeek). October, 2022. P. 1–6.
14. Glauberman M.A., Kulinich O.A., Yegorov V.V. et al. The influence of structural defects in the surface layers of silicon on the conversion proper-ties of the injection-inversion magnetosensitive structure. Physics and Chemistry of Solid State. 2004. 5, No 1. P. 38–43.
15. Goncalves J.A., Mangiarotti A., & Bueno C.C. Current response stability of a commercial PIN photodiode for low dose radiation processing applications. Radiation Physics and Chemistry. 2020. 167. P. 108276. https://doi.org/10.1016/j.radphyschem.2019.04.026.
| |
|
|